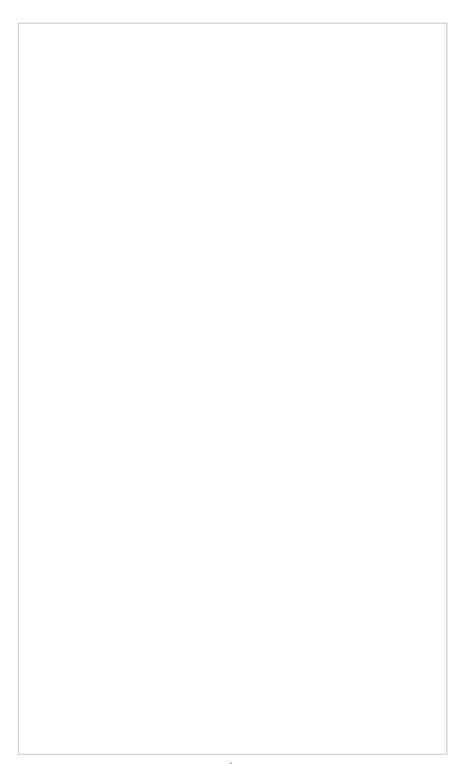

Karl-Otto Eschrich

Grundlagen der Physik der Elementarteilchen

und die
Entstehung
des Kosmos
aus dem
Pandynato


Überarbeitete Neuauflage 2.3.2, 28. Oktober 2025 Ein neuer Zugang zur Physik der Elementarteilchen

Ich behaupte demnach: die transzendentalen Ideen sind niemals von konstitutivem Gebrauche, so, dass dadurch Begriffe gewisser Gegenstände gegeben würden, und in dem Falle, dass man sie so versteht, sind es bloß vernünftelnde (dialektische) Begriffe. Dagegen aber haben sie einen vortrefflichen und unentbehrlich notwendigen regulativen Gebrauch, nämlich den Verstand zu einem gewissen Ziele zu richten, in Aussicht auf welches die Richtungslinien aller seiner Regeln in einem Punkt zusammenlaufen, der, ob er zwar nur eine Idee (focus imaginarius), d.i. ein Punkt ist, aus welchem die Verstandesbegriffe wirklich nicht ausgehen, indem er ganz außerhalb der Grenzen möglicher Erfahrung liegt, dennoch dazu dient, ihnen die größte Einheit neben der größten Ausbreitung zu verschaffen.

Immanuel Kant (1724 – 1804), (KdrV, A 644)

Überarbeitete Neuauflage 2.3.2, Oktober 2025 Selbstverlag Copyright © Karl-Otto Eschrich, Potsdam 2016 Druck Karl-Otto Eschrich Auszugsweise Kopien nur mit Quellenangabe Anschrift des Verfassers: Karl-Otto Eschrich Lennéstraße. 81 D - 14471 Potsdam

Vorwort zur 1. Auflage

In diesem Büchlein sollen die Grundlagen der Physik der Elementarteilchen auf einer anderen als der derzeit üblichen Weise dargelegt werden. Dabei werden andere Grundbegriffe eingeführt, die ein radikales Umdenken gegenüber den Grundlagen der derzeitigen Stringtheorie und der Supersymmetrie erforderlich machen, wenngleich einige Parallelen vorhanden sind. Letztlich werden alle einfachen Elementarteilchen durch deren Geometrie definiert und ihre Wechselwirkung auf den einfachen Prozess des Zählens reduziert. Folglich wird beispielsweise die Natur der Neutrinos geklärt, sowie Eigenschaften zusammengesetzter Teilchen wie die der Protonen und die der Neutronen.

Mit diesen Grundlagen kann ein Modell der Entstehung des Kosmos gebildet und einige heute anstehende Fragen (beispielsweise der des Positronenüberschusses) beantwortet werden.

Als Physiker kann ich nicht die notwendige Mathematik entwickeln, sondern lediglich eine Richtung weisen und vorgeben, was sie leisten muss. Wie einige Male in der Vergangenheit existiert sie (eventuell) bereits, ist den Physikern aber nicht bekannt (gewesen).

Die hier dargestellten Ansätze sind in der Zeit von 2002 bis 2015 entstanden und wurden in den drei Auflagen von "Grundbegriffe der Physik" (2007 1. Auflage, 2012 2. Auflage, 2013 3. Auflage) und den folgenden fünf Appendices veröffentlicht, u.a. im Internet.

[http://www.ewald-gerth.de/karl-otto-eschrich.htm]

Potsdam, Oktober 2016

Hart Ollo Endrick

Vorwort zur Neuauflage, Dezember 2020

Die erste Auflage hat im Laufe der Zeit eine Reihe von Korrekturen und Ergänzungen erfahren, so dass inzwischen vermutlich eine abgerundete Arbeit entstanden ist. Allerdings hatte ich bereits bei der Version 1.4 diesen Eindruck, weshalb ich das Heft druckte. Abgesehen von der fehlenden Entwicklung der Mathematik hatte ich im November des Jahres 2020 mein letztes offenes Problem gelöst. Die Entwicklung verlief im Einzelnen folgendermaßen:

Version 1. November 2016

Version 1.1, Ergänzung um "kosmische Gammablitze", Juni 2017

Version 1.2, Präzisierung zur Bewegung Dunkler Materie, August 2017

Version 1.2.1, Präzisierung zu Elementarteilchen als Welle, November 2017

Version 1.3 Ergänzung zu • 14 Subteilchen, Coloron- & Gammablitze,

Bildung höchstenergetischer Neutrinos, 21. März 2018

Version 1.4 Ergänzung zu • 12 Wechselwirkung von Leptonen mit Leptonen

ohne Bosonen – detailliertere Untersuchung der Stösse, insbesondere zum negativen Spin des Anti-Elektron-Neutrinos, 16. Mai 2018 [Gedrucktes Heft]

Version 1.5 Korrektur zur Ruhenergie des Neutrinos, 21. Februar 2019

Version 1.5.1 Ergänzung zu den beiden möglichen Eichtransformationen, 17. Juni 2019

Version 1.6 Neue Darstellung der Neutrinooszillation, 3. August 2019

Version 1.7 Im Abschnitt zur Entstehung des Kosmos, Ergänzung zur Entstehung der Dunklen Materie, 30. November 2019

Version 1.7.1 Hinzufügen zweier Grafiken Version, 22. Januar 2020

Version1.7.2 Hinzugefügt wurde ein Absatz zu den Begriffen Quantenfluktuation und Vakuumfluktuation, 19. Juni 2020

Version 1.7.3 Hinzugefügt wurde ein Absatz zur Darstellung der Struktur einfacher Teilchen, 3. Oktober 2020

Version 1.7.4 Hinzugefügt wurde der Abschnitt • 14.2 "Schwere" Schwarze Löcher, 26. Oktober 2020

Version 1.8 Diese Version enthält in Abschnitt • 11 eine Begründung, weshalb es die farbneutralen Konglomerate aus drei Quarks, die Δ -Baryonen Δ ⁺⁺ und Δ -, nur mit Spin 3/2 gibt, aber nicht mit Spin 1/2. 30. November 2020

Version 1.9, 20. Januar 2021

Version 1.9.1, 23. Januar 2021

Version 1.9.2, 24. Januar 2021

Version 2 Auflage von 1.9.2 unter neuem, erweitertem Titel, 2. Dezember 2021 Grundlage der Physik der Elementarteilchen und die Entstehung des Kosmos Version 2.1, Überarbeitung von • Abschnitt 21, 15. August 2023

Version 2.1.1, 27. Januar 2024

Ergänzung mit den Abschnitten • 9.3 Wechselwirkung von Neutrinos allgemein mit Leptonen und • 20.2 Das Pauliprinzip – geometrische Deutung

Version 2.1.2, 23. Juli 2024 Im laufenden Text wird für das Antineutrino wie üblich $\overline{\nu}$ geschrieben und nicht mehr ν^- (in Relationen jedoch gelegentlich).

Version 2.1.3, 28. November 2024, Wieviele Dimensionen hat der Kosmos? 26. Januar 2025 Ergänzung in 3.3.1 über die Bedeutung der Torsion $\mathcal{T} \neq 0$

Version 2.3, September 2025 Generelle Überarbeitung

Version 2.3.1, 8. Okt. 2025, neu Abschn. • 8.5 Konglomerate aus Photonen

Version 2.3.2, 28. Oktober 2025, Modifikation in • 3.3.1 Der Spin

und 30. Oktober 2025, neuer Abschnitt • 22 Nachfolge-Supernova

Die Hinweise auf das "LEHRBUCH DER THEORETISCHEN PHYSIK" von L. D. Landau und E. M. Lifschitz werden als Landafschitz abgekürzt.

Inhalt

[Das Symbol ■ im Text führt zurück zum Inhaltsverzeichnis Aus dem Inhaltsverzeichnis kann man direkt zum Abschnitt springen]

Gliederung/Abschnitt	Seite
• 1 Einführung	9
• 2 Grundbegriffe	10
• 2.1 Materie	10
• 2.2 Eigenschaft Eig & Wechselwirkung	12
• 2.3 Beobachtbarkeit	12
• 3 Der Raum & die Zeit	13
• 3.1 Der Punkt	13
• 3.2 Der Raum in der Physik	14
• 3.2.1 Der klassische Raum	14
• 3.2.2 Der physikalische Raum	15
• 3.2.3 Der nichtklassische Raum	15
• 3.3 Teilchen und Geometrie	17
• 3.3.1 Der Spin	19
• 3.4 Die Zeit	21
 4 Eigenschaften einfacher Elementarteilchen 	22
• 4.1 Energie und Impuls eines Elementarteilchens	23
• 4.2 Die Ruhenergie eines Elementarteilchens	24
• 4.3 Die Wirkung eines Elementarteilchens	24
• 4.4 Teilchen mit Ruhenergie und ihre Wechselwirkung	26
• 4.5 Elementarteilchen als Welle	26
• 4.6 Elementarteilchen klassisch betrachtet	29
• 5 Πανδύνατο (Pandynato)	30
• 6 Das Photon	31
• 6.1 Entstehung eines Photonenpaares	31
• 6.2 Entstehung eines globalen Raumes	35
 7 Die gemeinsame Grundlage der Wechselwirkungen 	36
• 7.1 Grundlagen	36
• 7.2 Raum und spezifizierte Eig – die Ladungen	37
• 7.3 Bosonen	38
• 7.3.1 Die (effektiv) ungeladenen Bosonen	39
Tabelle 1 Die effektiv ungeladenen Bosonen	32
• 7.3.2 Die geladenen Bosonen	42
Tabelle 2 Die geladenen Bosonen	42
• 7.3.3 Zuordnung der Gluonen zu den Bosonen	43
• 8 Die "gespaltenen" ungeladenen Bosonen – die Fermionen	44
• 8.1 Die "Aufspaltung" des Photons in ein Positron & ein Elektron	44
• 8.2 Die "Aufspaltung" des Colorons in ein Neutrino &	
ein Antineutrino	44
• 8.2.1 Vergleich einiger Werte von Elektron und Neutrino	45
• 8.2.2 Neutrinooszillation	45
• 8.3 Die "Aufspaltung" der $\delta_{(i)}$ - & $\epsilon_{(k)}$ -Bosonen in u- & d-Quarks	45
• 8.4 Das α-Quasi-Boson –Higgs oder Nicht-Higgs?	46

• 8.5 Konglomerate aus Photonen		46
• 8.6 Grafische Darstellung der Ladungen c ₀ und c _i		48
und ihre Wechselwirkungen		
• 9 Wechselwirkung der Fermionen mit Bosonen		51
• 9.1 Wechselwirkung der Quarks mit Gluonen		51
• 9.2 Wechselwirkung der Leptonen mit Bosonen		52
• 9.3 Wechselwirkung von Neutrinos allgemein mit Leptonen		53
• 9.4 Wechselwirkung von Gluonen mit Gluonen, Neutronens	terne	53
• 10 Farbneutrale Konglomerate aus zwei Quarks – die Meson	ien	54
Tabelle 3 Die Mesonen		55
• 11 Farbneutrale Konglomerate aus drei Quarks – die Baryon	en	55
Tabelle 4 Baryonen mit Spin ½		58
• 12 Wechselwirkung von Leptonen mit Leptonen ohne Boson	en	62
• 13 Erweiterte Helizität/erweiterter Spin		66
• 14 Subteilchen		68
• 14.1 Gammablitze		69
• 14.2 "Schwere" Schwarze Löcher		69
• 15 Erweiterung mit Ladungen höherer Symmetrie		70
• 16 Dunkle Materie (Masse)		70
• 17 Wechselwirkung der sichtbaren mit Dunkler Materie		71
• 18 Eine Bemerkung zum Quantenzustand eines Teilchens ?		72 72
• 19 Relativitätstheorie und Elementarteilchen		72 72
• 20 Zur Geometrie von Elementarteilchen		73 73
• 20.1 Darstellung der Struktur einfacher Teilchen		73
• 20.2 Das Pauliprinzip – geometrische Deutung		74
Texte zu den Abbildungen		75
1. Das Photon, Helizität ±1		75
2 Fermionen, Helizität ±2		75
2.1 Elektronen		75
2.2 Neutrinos & Quarks		76
3 Exotische und erweiterte Helizität		76
Abbildungen		77
1. Das Photon	77	
2.1.Elektronen	78	
2.2 Neutrinos und Quarks	81	
3 Exotische und erweiterte Helizität	82	
• 21 Die Entstehung der Welt aus dem Pandynato		83
• 22 Nachfolge–Supernova		92
Anhang I: Interpretation der Teilchenrelationen		93
Anhang II: Trägheit, Gravitationskonstante und Kosmologie		98
Formeln zum Friedmann-Kosmos		102
Wesentliche Grundlagen und Folgerungen		106
Nachtrag Sach- und Namenverzeichnis		109
Biografisches		110 112
Diugiansulus		112

• 1 Einführung

Auch wenn man einzelne Elementarteilchen nicht unmittelbar mit den Sinnen wahrnehmen kann, von einem Photon eventuell abgesehen, kann man davon ausgehen, das es sie gibt. Dies kann aus einer Reihe von Experimenten geschlossen werden. Als *Max Planck* (1858 – 1947) im Jahre 1900 mit der Beziehung E = h*v den später nach ihm benannten Proportionalitätsfaktor h als Wirkungsquantum einführte, hatte er noch nicht ein Elementarteilchen im Sinn. Nur mit dieser rein hypothetischen Einschränkung für die Energie der die bereits bekannten Elektromagnetischen Wellen erzeugenden Oszillatoren konnte er die Formel für die Schwarzkörper-Strahlung ableiten.

Auf der Grundlage der von *James Clerck Maxwell* (1831 – 1879) formulierten Gleichungen 1867 konnte das Licht als elektromagnetische Welle verstanden werden. Der Teilchencharakter des Lichtes hingegen konnte sich nur langsam durchsetzen, trotz des von *Albert Einstein* (1879 – 1955) entdeckten Photoeffektes mit der Deutung des Lichtes als quantisiertes Teilchen, als Photon (hierzu gibt es reichlich ausführliche Literatur).

Auf der Suche nach dem Träger der elektrischen Ladung fand man einen Stoff, der unabhängig vom untersuchten Elektroden-Material ist. Dessen Ladungsmenge fand man als sehr klein und schließlich als Teil aller Atome. In Experimenten suchte man die kleinste Einheit und bezeichnete ihn schließlich als Elektron. Dass es sich um ein Teilchen handelte wurde spätestens klar, als man bei Streuexperimenten mit Elektromagnetischen Wellen (Röntgenstrahlung) den Teilchen- und den Wellencharakter sowohl der Elektronen als auch der Photonen zum Verständnis heranziehen musste. Von da an nahm die Entwicklung der Quantenmechanik bis zur Quantenelektrodynamik parallel zur Relativitätstheorie einen rasanten Verlauf.

Man kann davon ausgehen:

Es gibt Elementarteilchen und zwar mit bestimmten Eigenschaften (Nullter Hauptsatz der Theorie der Elementarteilchen). (siehe • 2.2, S. 4)

Bereits zu Beginn des Verständnisses zu den Elementarteilchen tauchte eine Reihe Fragen auf, die zum Teil bis heute uneinheitlich beantwortet werden. Zum Beispiel die räumliche Ausdehnung eines freien Elektrons. Der im fortgeschrittenem Alter sich befindende Max Planck formulierte 1929 in einem Vortrag¹: "Man sieht: es geht hierbei um nichts weniger als um den Begriff des materiellen Punktes, den elementarsten Begriff der klassischen Mechanik. Die bisherige zentrale Bedeutung dieses Begriffes muss grundsätzlich geopfert werden; nur in besonderen Grenzfällen kann sie bestehen bleiben." – was er im Folgenden auch begründet. Nichtsdestotrotz steht heute (2016) in der deutschen Wikipedia: "Heute ist die Sichtweise bezüglich einer Ausdehnung des Elektrons eine andere: In den bisher möglichen Experimenten zeigen Elektronen weder Ausdehnung noch innere Struktur und können insofern als punktförmig angenommen werden." Über den Spin des Elektrons erfährt man lediglich, dass er zwar zum Drehimpuls des Elektrons beiträgt und eine "innere" Eigenschaft ist. Immerhin gelangt man über die geometrischen Eigenschaften bei Drehungen des Koordinatensystems zu den Spinoren, den

^{1. &}quot;Das Weltbild der neuen Physik", S. 23 der sechzehnten Auflage

mathematischen Objekten zu dessen Beschreibung. Versuche hierfür ein geometrisches Modell des Elektrons zu finden reichen bis zur Mitte des 20. Jahrhunderts zurück, hatten jedoch keinen Erfolg. Wie in Abschnitt • 3.3 gezeigt, ist ein geometrisches Modell zur Beschreibung des Spins, genauer der Helizität, des Elektrons, ganz einfach.

Auf die großen Erfolge der Quantenelektrodynamik aufbauend, hat man die gleichen Methoden zur Beschreibung der sogenannten Farbladung, die zu den Kernkräften führt, angewandt. Die zahlreich dabei auftretenden Probleme hat man durch stetige Erweiterungen zu beheben versucht, die die Theorie immer weiter hat kompliziert werden lassen.

Nimmt man die derzeit auftretenden Probleme zusammen, die hier nicht weiter aufgeführt werden, kann durch eine Neuordnung der physikalischen Grundbegriffe durch wenige Hypothesen Ordnung in die Beschreibung der Elementarteilchen gebracht werden. Die weiterhin unbekannten und somit unausgesprochenen Voraussetzungen dürften auf ein geringes Maß geschrumpft sein, denn die Elementarteilchen werden durch ihren Raum und dessen Topologie vollständig beschrieben und ihre Wechselwirkung wird auf den elementaren Vorgang des Zählens zurückgeführt.

Die Mathematik hierzu muss (vermutlich) noch entwickelt werden. Es wird lediglich angegeben, was sie leisten müsste. [10]

In den Grundlagen muss man auf in der Physik bekannte Begriffe zurück greifen, die folgend eingeführt werden.

• 2. Grundbegriffe

Die Grundbegriffe sind im Rahmen einer Theorie nicht definiert und oft nicht erklärt. Ihre Bedeutung erschließt sich aus früheren Erfahrungen (des Wissenschaftlers) und kann nur an Hand von Beispielen deutlich gemacht werden. Alle anderen in einer Theorie verwendeten Begriffe werden von ihnen abgeleitet.

Dabei besteht eine gewisse Willkür, welche Begriffe als Grundbegriffe und welche als abgeleitete Begriffe gewählt werden (vergleiche die Keplerschen Gesetze mit der Newtonschen Mechanik und dem Gravitationsgesetz).

• 2 1 Materie

Die Elementarteilchen sind die einfachsten, elementarsten Bestandteile der Materie.

Der Begriff der Materie kann als Gegenstück zum Bewusstsein (manchmal inkorrekt als menschlicher Geist bezeichnet) verstanden werden.

Über die Sinnesorgane und dem Bewusstsein tritt der Mensch, selbst aus Materie bestehend, mit Materie in Wechselwirkung. Infolge der Selbstreflexion (einer internen Wechselwirkung des Bewusstseins "mit sich selbst") kann ein Eigenbewusstsein entstehen. Somit kann eine Trennung des Eigenbewusstseins von allem anderen gelingen. Da man anderen Individuen "vernünftigerweise" ebenfalls ein Eigenbewusstsein zugestehen sollte, kann man Materie als alles

<u>außerhalb und vor allem unabhängig von jeglichem Bewusstsein</u> Existierendem verstehen.

Ein Individuum hat nur ein Bild der Materie, also eine Vorstellung über sie. Dieses Bild ist natürlich vom Bewusstsein und den "vorgeschalteten" Sinnesorganen abhängig, da man nur im Bewusstsein über die Materie reflektieren kann. Da jedes Bewusstsein beschränkt ist, ist das Bild der Materie nicht nur unvollständig, sondern auch einseitig, gleichsam eine Schablone der Materie. Für ein einzelnes Individuum existiert die Materie (nur) in dessen Bewusstsein.

Dies ist eine Erklärung des Begriffes Materie, aber keine Definition, da der Begriff "Bewusstsein" nicht definiert, sondern als allgemein bekannter Begriff – a priori – vorausgesetzt ist. Dieses Dilemma tritt stets bei grundlegenden Begriffen auf. Bereits deutlich bei der klassischen, Newtonschen Mechanik (es gibt mehr Begriffe als Relationen zwischen ihnen). Gezwungener maßen werden einige Begriffe aus dem "gesunden" Menschenverstand entlehnt, die bestenfalls an Hand von Beispielen oder dargestellten Vorgängen erläutert werden können.

Ob Bewusstsein abhängig oder unabhängig von jeglicher Materie angesehen wird, ist dabei unwesentlich. Hier wird jedoch davon ausgegangen, dass ein Bewusstsein eine Eigenschaft hochkomplexer Materie ist, aber eine darüber stehende Erscheinungsform haben kann, in gewissem Maße außerhalb – nicht unabhängig – von Materie existiert. Denn ein schöpferisches Bewusstsein, ein schöpferischer "Geist", ist nicht ohne Weiteres aus der Materie zu erklären.

Die Materie hat verschiedene Eigenschaften, wie Wirkung, Energie, Bewegungsgröße (s. z.B. die grundlegenden Relationen, (8.1) bis (8.3) in • 4.3) und verschiedene Erscheinungsformen. Aus der klassischen Thermodynamik sind z.B. die Zustandsgrößen Entropie, Volumen (oder Massendichte), Druck und Temperatur bekannt.

Raum und Zeit sind nicht Materie, werden aber durch sie hervorgerufen. Letztendlich sind Raum und Zeit Eigenschaften der Materie. Raum und Zeit sind jedoch notwendig zur Existenz von Wechselwirkung (siehe • 2.3 Beobachtbarkeit) und letztlich von Individuen, die in ihrem Bewusstsein erst den Begriff der Materie bilden können.

Bei den Elementarteilchen gibt es zwei grundsätzlich verschiedene Formen, einmal die mit Ruhenergie gleich Null, z.B. die Photonen, und die ungleich Null, z.B. die Elektronen, die u.a. die "stoffliche" Form darstellt.

Neben diesen seit langem bekannten Formen gibt es noch andere Formen (z. B. siehe • 8.2, Neutrinos und die sogenannte unsichtbare oder Dunkle Materie.

• 2.2 Eigenschaft Eig & Wechselwirkung

Die gegenseitige Wirkung von Elementarteilchen aufeinander wird als Wechselwirkung bezeichnet und wird durch den physikalischen Begriff der **Wirkung**² ausgedrückt. Aber was verursacht die Wirkung? Ein Elementarteilchen muss eine gewisse grundlegende Eigenschaft aufweisen, auf die sich die Wechselwirkung bezieht. Diese Eigenschaft ist "Durchsichselbstseiend" und somit universell, es ist der Eine einheitliche "Urstoff" aller Elementarteilchen. Für ihn wird der Begriff **Eig** eingeführt³. Wechselwirkung und Eig stehen in unmittelbarem Zusammenhang.

Bereits vor dem 8. Jahrhundert v. Chr. hatten einige Babylonier, Ägypter und Griechen die Idee eines einheitlichen Urstoffes aller Substanzen. Als diesen sahen sie das Wasser an . Der heutigen Vorstellung kam *Thales von Milet* (um 624 bis 546 v. Chr.) am nächsten, wenngleich für ihn ebenfalls das Wasser dieser Urstoff sein sollte (siehe Wikipedia).

• 2.3 Beobachtbarkeit

Die Beobachtung ist einer der wichtigsten Grundlagen jeder Wissenschaft. Der Begriff der Beobachtung ist in der Physik so bedeutend, dass aus ihm die Grundlage des Verständnisses der Materie im Raum und in der Zeit abgeleitet werden kann. In der Wissenschaft werden **Ereignisse** beobachtet und mit Begriffen in Verbindung gebracht, zwischen denen Beziehungen oder Zusammenhänge gesucht werden.

Eine Messung ist eine Beobachtung unter einer Reihe spezieller Voraussetzungen. Beispielsweise sind bei einer Messung die Existenz und die vorhergehende Festlegung von Maßstäben erforderlich.

Das wesentliche Merkmal von Elementarteilchen ist deren Wechselwirkung untereinander. Dabei werden bestimmte Eigenschaften, in der klassischen Quantenmechanik Zustände genannt, geändert, wie der Impuls und die Energie, ähnlich wie man es aus der klassischen Mechanik bei Stößen kennt. Bei einer Wechselwirkung sind mindestens zwei Teilchen erforderlich. Soll sie als **Ereignis** beobachtbar sein, sind zwei Voraussetzungen erforderlich. Erstens müssen beide Teilchen sich räumlich unterscheiden und es muss ein zeitlicher Unterschied bestehen, um eine Änderung des Zustandes oder der Zustände registrieren zu können. Das bedeutet, es gibt eine Geschwindigkeit der Ausbreitung der Wechselwirkung, die nicht unbegrenzt sein darf. Als grundlegend gilt: Die **Beobachtbarkeit** einer **Wechselwirkung** erfordert eine Unterscheidbarkeit im Raum und in der Zeit, d.h. eine obere Grenze ihrer Fortpflanzungs-Geschwindigkeit. Diese wird mit der Photonen (Photonen im "Vakuum") identifiziert.

^{2.} Siehe hierzu • 4.3, S. 24

^{3.} der Begriff "Eig" dient vor allem der Unterscheidung von "Eigenschaft" und "Merkmal". Man könnte auch "Ens" im Sinne von Ens a se: das "Durchsichselbstseiende" verwenden.

Die Ausbreitung der Wirkung erfolgt wiederum durch Eigenschaften Eig; die in der Physik z.B. durch Wechselwirkungsteilchen (Bosonen, klassisch Felder) beschrieben wird.

Als zweite Bedingung der Beobachtbarkeit darf die Wechselwirkung nicht beliebig klein sein, d.h. sie muss eine Mindestgröße besitzen. Sie wird mit dem Planckschen **Wirkungsquantum** h bzw. $\hbar = h/2\pi$ identifiziert. Dieses minimale Maß der Wirkung \hbar gilt als universelle Größe und wird für alle Formen der Eigenschaft Eig, den Ladungen, als gleich angenommen.

Wäre es denkbar, dass die Grenzgeschwindigkeit c für verschiedene Ladungen unterschiedlich ist? Da die verschiedenen Ladungen Ausdruck der einen, universellen Eig (in lediglich verschiedenen Raumdimensionen, wie weiter unten dargelegt ist) ist und diese sich nicht weiter unterscheiden, sind auch die Grenzgeschwindigkeit c und das Wirkungsquantum universell, d.h. gleich für die Wechselwirkung aller Arten von Ladungen.

Es ist nicht ausgeschlossen, dass es Materie gibt, die diese Bedingungen nicht erfüllt, etwa ohne Unterschiede in Raum oder Zeit existiert. Dann ist die Wechselwirkung einer direkten Beobachtung nicht zugänglich. Andererseits folgt daraus, dass die Eig/Ladung eines Elementarteilchens innerhalb dessen Raumes (Volumens) nicht miteinander wechselwirkt. Dann gibt es auch keine Geschwindigkeit ihrer Ausbreitung, wodurch die Grundlage der Relativitätstheorie innerhalb eines Teilchens nicht erfüllt ist. Mit anderen Worten: Innerhalb eines Elementarteilchens ist die Relativitätstheorie nicht anwendbar (nicht gültig).

• 3. Der Raum & die Zeit

Wie bereits beschrieben, ist die Wechselwirkung ein Phänomen, dass sich im Raum und in der Zeit ereignet. Die Eigenschaften des Raumes werden durch dessen Geometrie beschrieben. In der klassischen Geometrie ist der Begriff des Punktes grundlegend.

• 3 1 Der Punkt

In der Mathematik ist ein Punkt ein geometrisches Objekt der Dimension Null, welches in einem Raum beliebiger Dimension eingebettet sein kann oder ein geometrisches Objekt beliebiger Dimension mit der Ausdehnung Null. In der Physik können einem Punkt Eigenschaften zugeschrieben werden, beispielsweise kann er eine Masse (Massepunkt) oder auch eine elektrische Ladung (Punktladung) besitzen. Die Einführung des Punktes ist als Grenzübergang eines Festkörpers mit kleiner werdender Ausdehnung, bis zur Ausdehnung Null zu verstehen. Somit ist offensichtlich, dass ein Punkt eine Idealisierung darstellt, ein transzendentales Objekt ist,, also in der "Realität" nicht existiert.

Quantenobjekte, wie die sogenannten Elementarteilchen, können im Allgemeinen nicht wie Festkörper behandelt werden. Deshalb ist bei ihnen der Übergang zu einem Punkt im Allgemeinen nicht möglich (siehe unten • 3.2.3 Der nichtklassischer Raum).

• 3.2 Der Raum in der Physik

Der Raum in der Physik ist ein abstraktes Gebilde, in dem Ereignisse stattfinden. Er ist mit der Zeit verknüpft und bildet die Raum-Zeit, in welcher die Ausbreitung einer Wirkung begrenzt ist. In der Physik hat sich die Vorstellung über das Wesen des Raumes über die Jahrhunderte geändert. Heute sind verschiedene Modelle eines Raumes gebräuchlich.

• 3.2.1 Der klassische Raum

Der Raum der klassischen Physik ist der Anschauung der Mechanik entlehnt. Beginnend mit *Newton* (1643 – 1727) wird die Vorstellung über ihn durch *Einstein* abgeschlossen. Es ist der für die Anschauung gewohnte dreidimensionale Riemannsche Raum, ergänzt durch eine Dimension der Zeit. Er ist gemäss den Feldgleichungen von Einstein durch den Energie-Impuls-Tensor gekrümmt, also der Energiedichte, der Energiestromdichte, der Impulsstromdichte (die beide gleich sind) und dem Spannunstensor. (Unmittelbare) Beobachtungen und Messungen werden in diesem **Beobachterraum** ausgeführt.

Im Rahmen der Newtonschen Mechanik gibt es im *dreidimensionalen* Raum in Verbindung mit der eindimensionalen Zeit bei zentralen Potentialen nur für $U = U_0/r$ und $U = U_k*r^2$ geschlossene Bahnen (Landafschitz, Bd. I).

Der klassische Raum ist mit bestimmten Eigenschaften ausgestattet. Er enthält Punkte (siehe oben • 3.1 **Punkt**), die beliebig dicht beieinander liegen und somit ein (Punkte–)Kontinuum ausfüllen. Jede Dimension des Raumes kann als ein eindimensionaler Raum, eine Linie, dargestellt und jedem Punkt der Linie kann wiederum eine reelle Zahl zugeordnet werden. Alle diese Punkte können der Größe ihres Zahlenwertes nach geordnet werden (praktischerweise unter Zuhilfenahme eines Maßstabes, gemessen in einer Einheitslänge). Unter dieser Voraussetzung und unter Beachtung der Topologie und der Krümmung des Raumes kann zwischen zwei Punkten ein Abstand definiert und gemessen werden; es handelt sich um einen metrischen Raum. Ist dieser ndimensional, kann jedem Punkt ein n–fach–Tupel reeller Zahlen zugeordnet werden.

In gekrümmten Räumen gibt es zwei n-Tupel, das kovariante und das kontravariante, abhängig davon, wie die Projektion auf die Koordinatenachsen geschieht.

Dies bildet die wesentlichen Voraussetzungen der Differentialrechnung, die von *Isaak Newton* und *Wilhelm Leibniz* (1646 – 1716) unabhängig voneinander eingeführt wurde und in der Physik zu einem der wichtigsten Werkzeuge bei der Beschreibung kontinuierlicher Größen dient.

Die Vorstellung, dass der Raum durch die in ihm enthaltene Materie bestimmt wird, geht bis auf die Griechische Antike zurück. *Ernst Mach* (1838 – 1916) formulierte dies deutlich und beeinflusste damit *Albert Einstein*.

• 3.2.2 Der Physikalische Raum

Der Urstoff Eig (• 2.2) bildet den Raum und die Zeit eines jeden Teilchens. Diese Raum-Zeit eines Teilchens ist "eigenständig", benötigt keine übergeordnete oder gar globale Raum-Zeit, in die sie eingebettet ist, so wie man sich einen Körper im Raum und in der Zeit gemeinhin vorstellt.

Abhängig davon, welche und wie viele Dimensionen dieser Raum hat, wird die Eigenschaft Eig zu einer speziellen oder mehreren speziellen Ladungen. Zur Zeit sind zwei Arten von Ladungen bekannt, die elektrische Ladung einerseits und die drei sogenannten Farbladungen andererseits.

Um diese bisher bekannten Ladungen "unterbringen" zu können, benötigt man neun Raumdimensionen, die den physikalischen Raum bilden. Die drei Dimensionen des Beobachterraumes werden durch sechs zusätzliche Dimensionen ergänzt.

Der Raum einer Art von Ladung hat drei Dimensionen, damit er einen "Inhalt" bilden kann , die Zeit besitzt nur eine Dimension (näheres weiter unten).

Es gibt Zusammenhänge zur Algebra; so führen die beiden Vorzeichen + und – zur Eigenschaft/Ladung und zur Anti-Eigenschaft/Anti-Ladung.

• 3.2.3 Der nichtklassische Raum

Durch die Bildung von Konglomeraten aus Quantenobjekten, die Körper bilden können und in einem (globalen) Raum eingebettet sind, sind transzendental Raum-Punkte denkbar, indem man sich vorstellt einen Körper endlos kleiner machen zu können bis er keine Ausdehnung mehr hat.

Da für Quantenobjekte die Einführung des Punktes nicht möglich ist, können diese auch nicht durch einen klassischen Kontinuums-Raum beschrieben werden. Man benötigt hierfür einen nichtklassischen Raum, in dem keine Abstände gemessen werden können – einen nichtmetrischen Raum. Da in ihm (im Allgemeinen) keine Punkte existieren, können einem Abstand keine reellen Zahlen zugeordnet werden. Es ist eine unscharfe, räumlich eine verschwommene Grösse. Dafür wird symbolisch beispielsweise $\mathbf{x}(x)$ fett und mit Querstrich) geschrieben.

Außerdem soll es möglich sein, dem Raum ein Volumen ¥ zuzuschreiben.

Man muss deutlich unterscheiden vom Raum eines einfachen Elementarteilchens und einem eventuell existierenden globalen Raum, dem Einbettungsraum, in dem – nicht notwendig – der Raum des Teilchens eingebettet ist. Beide Räume können sich in der Anzahl ihrer Dimensionen und in ihrer Topologie unterscheiden. <u>Der globale Raum kann nur über die Wechselwirkung der in ihm enthaltenen Teilchen entstehen.</u> Das bedeutet in diesem Fall, dass zwischen den Teilchen zwingend ein (unscharfer) Abstand vorhanden sein muss. Analoges gilt für die stets eindimensionale Zeit.

So wie Abstände, oder der Raum selbst, und Zeitabstände, oder die Zeit selbst, nichtmetrische Grössen sind, sind physikalische Grössen, wie Energie und Impuls, zwangsläufig ebenfalls unscharf, so sie einen Zusammenhang mit nichtmetrischen geometrischen Größen besitzen.

Produkte von unscharfen Objekten sind keine einfachen Multiplikationen, sondern eine Verknüpfung $\mathbf{A}\otimes\mathbf{B}=\mathbf{C}^4$. Die Umkehrung einer derartigen Multiplikation existiert nicht, $\mathbf{A}\neq\mathbf{C}/\mathbf{B}$. Es gibt den Sonderfall $\mathbf{A}\otimes\mathbf{B}=\mathbf{C}$, einer metrische Grösse. Eventuell existiert im Fall eines Skalars ein inverses Element \mathbf{A}^{-1} mit $\mathbf{A}\otimes\mathbf{A}^{-1}=\mathbf{1}$, mit einer "unscharfen" 1. Bei Skalaren gilt auch das Assoziativgesetz $\mathbf{A}\otimes(\mathbf{B}\otimes\mathbf{C})=(\mathbf{A}\otimes\mathbf{B})\otimes\mathbf{C}$. Jede Relation, mit Skalaren oder Vektoren, kann mit einer reellen Zahl multipliziert werden, z.B. $\mathbf{A}\otimes\mathbf{B}=\mathbf{C}$ multipliziert mit a ist $\mathbf{a}\mathbf{A}\otimes\mathbf{B}=\mathbf{a}\mathbf{C}=\mathbf{C}\mathbf{a}$. Die Norm von \mathbf{A} ist $\mathbf{A}=\|\mathbf{A}\|$ und es gibt die \mathbf{A} -Unschärfe \mathbf{I}_A mit $\mathbf{A}=\mathbf{A}$ \mathbf{I}_A oder $\mathbf{I}_A=\mathbf{A}/A$. Es soll $\mathbf{I}_A\otimes\mathbf{I}_A\equiv\mathbf{I}_A^2=\mathbf{1}$ gelten. Ist \mathbf{A} ein Vektor, ist dessen Einheitsvektor \mathbf{I}_A . Wobei $\mathbf{1}$ der

unscharfe Eins-Skalar ist.

Wenn zwei nichtmetrische Vektoren **A** und **B** parallel sein sollen, muss einerseits

$$\mathbf{A} \otimes (\mathbf{B} \otimes \mathbf{B}) = (\mathbf{A} \otimes \mathbf{B}) \otimes \mathbf{B}$$
, oder gleichberechtigt (1)

$$\mathbf{A} \otimes (\mathbf{A} \otimes \mathbf{B}) = (\mathbf{A} \otimes \mathbf{A}) \otimes \mathbf{B} \text{ gelten.} \tag{2}$$

Beide Relationen führen auf

$$(\mathbf{A} \otimes \mathbf{A}) \otimes (\mathbf{B} \otimes \mathbf{B}) = (\mathbf{A} \otimes \mathbf{B}) \otimes (\mathbf{A} \otimes \mathbf{B}), \text{ kurz } \mathbf{A}^2 \otimes \mathbf{B}^2 = (\mathbf{A} \otimes \mathbf{B})^2, \tag{3}$$

eine mit ≥ bekannte Ungleichung, wobei das =-Zeichen für parallele Vektoren gilt. Die Ausdrücke mit den Klammern sind Skalare, die i.A. nichtmetrisch sind.

Gelegentlich wird formal A=C/B geschrieben, darunter ist jedoch $A\otimes B=C$ zu verstehen.

Zur besseren Veranschaulichung kann man die nichtmetrischen Grössen mit einem metrischen Gitternetz überziehen. Dazu bettet man den nichtmetrischen Raum in einem metrischen ein. Ein nichtmetrisches Objekte A erscheint im metrischen Raum als eine metrische Grösse A mit einer Unschärfe δA gemäß $A \rightarrow A + \delta A$; δA ist ein Funktional. A und δA sind voneinander unabhängig.

Für die Einbettung in einem metrischen Raum gilt

$$(A + \delta A)^*(B + \delta B) = (C + \delta C), \tag{4}$$

formal aber auch die Umkehrung

$$(A + \delta A) = (C + \delta C)/(B + \delta B). \tag{5}$$

A, B, δA, δB können Skalare oder Vektoren sein, C und δC wären hier Skalare. Wegen der Unabhängigkeit der nichtmetrischen von den metrischen Grössen wird aus obiger Relation

$$A*B=C \text{ und } A*\delta B+B*\delta A+\delta A*\delta B=\delta C.$$
 (6)

Im Fall von $\mathbf{A} \otimes \mathbf{B} = \mathbf{C}$ und außerdem verschwindender Unschärfe $\delta \mathbf{C} \equiv 0$ erhält man mit $\alpha = \delta \mathbf{A}/\mathbf{A}$ und $\beta = \delta \mathbf{B}/\mathbf{B}$ den Zusammenhang der Unschärfen

$$\alpha = -\beta/(1+\beta)$$
, symmetrisch dazu $\beta = -\alpha/(1+\alpha)$. (7)

Für $\alpha > -1$ folgt $\beta > -1$, dabei geht für $\alpha \to -1$ $\beta \to \infty$ und umgekehrt.

Für $\alpha < -1$ folgt $\beta < -1$, dabei geht für $\alpha \to -1$ $\beta \to -\infty$ und umgekehrt.

Im Falle $|\alpha|$ « 1 (ebenso $|\beta|$ « 1) ist $\alpha \approx$ - β , damit folgt aus α =0 auch β =0, (und umgekehrt) und aus α = -2 auch β = -2 (und umgekehrt).

^{4.} Unter einer solchen Verknüpfung kann man sich eine Faltung vorstellen.

Folglich ist im Fall $\delta C \equiv 0$, auch $\delta A = \delta B = 0$ möglich. Dies ist der klassische/metrische Grenzfall. Die weiter unten stehenden grundlegenden Beziehungen in • 4.3, Gln. (8), sind auch bei ähnlicher Form nicht die Heisenbergsche Unschärferelation! *Werner Heisenberg* (1901 –1976).

Ist ein Vektor I_A ein nichtmetrischer Einheitsvektor von A, also

$$\mathbf{A} = \mathbf{A}^* \mathbf{I}_{\mathbf{A}},\tag{8}$$

so soll im metrischen Einbettungsraum $I_A^2 = |I|^2 = 1$ gelten, mit $A \Rightarrow A + \delta A$ und $I_A \Rightarrow I_A + \delta I_A$.

(Siehe jedoch S. 25 Quantenfluktuation, Vakuumfluktuation).

Der offensichtliche "Umweg" der zusätzlich eingeführten Punkte einer metrischen Metrik kann sich als nützlich erweisen, wenn man das Werkzeug der Differential- oder Integralrechnung benutzen will, wie sie in der klassischen Physik bei der Darstellung von Zusammenhängen zwischen physikalischen Größen häufig angewendet wird. Dann müssen bei nichtmetrischen Größen alle "zuviel" eingeführten Punkte und Linien wieder aufsummiert (oder integriert) werden (Feynmansche Pfadintegrale).

• 3.3 Teilchen und Geometrie

In den Anfangsjahren der Quantenmechanik sprach man von **Aufenthalts-wahrscheinlichkeit**, offensichtlich unter der Vorstellung eines Quantenobjektes als punktförmigen oder kugelförmigen Körper der klassischen Mechanik. Dies wurde durch *Lew Landau* (1908 – 1968) spätestens im Jahre 1947 korrigiert, etwa zur gleichen Zeit auch von *Richard Feynman* (1918 – 1988). Es handelt sich um die Wahrscheinlichkeit der **Messung** eines Teilchens in einem Raumbereich. Ist dieser genügend gross, so ist diese Wahrscheinlichkeit Eins (oder Null, wenn das Teilchen außerhalb existiert). Bei einem freien, insbesondere einem ungebundenen, Teilchen ist dieser Raumbereich in (mindestens) zwei Dimensionen senkrecht zur Impulsrichtung sogar unendlich.

Die Natur zeigt, dass alle einfachen Teilchen einen inneren Drehimpuls, einen Spin, besitzen. Demzufolge müssen Teilchen mit dem Spin 0 aus zwei (oder 4 usw.) Teilchen zusammengesetzt sein, mit anderen Worten ein Konglomerat aus einer geraden Anzahl von Teilchen mit der Summe der Spins gleich Null. Mit dem Spin in Zusammenhang steht die Helizität, wie im folgenden Unterabschnitt • 3.3.1 dargelegt ist.

Einfache Teilchen zeigen deshalb infolge ihres Spins eine ausgezeichnete Richtung. Da die Kugel keine ausgezeichnete Richtung hat, ist sie nicht als Modell für ein Elementarteilchen brauchbar.

Die Mathematiker geben hierfür einen tieferen Grund an. Sie stellen die Hypothese auf, die Oberfläche von Elementarteilchen muss parallelisierbar sein. Die Kugel ist eine 2-Sphäre in einem dreidimensionalen Raum und nicht parallelisierbar – das Feld der tangentialen Vektoren hätte mindestens einen singuläre Punkt. Anschaulich gesprochen: Würde man die Kugel mit einem Fell überziehen, besäße sie mindestens einen singulären Punkt; an diesem Punkt würden die Haare auseinander gehen oder zusammenstossen oder er hätte dort einen Wirbel.

Der Kreis, die 1-Sphäre, ist parallelisierbar, sein zweidimensionaler Inhalt bietet jedoch nicht das Volumen zur Aufnahme der Eig/Ladung und keine Möglichkeit zur Darstellung einer Helizität. Dennoch werden die 1-Sphären oder Linien als Grundlage der Stringtheorie herangezogen.

Die 3-Sphäre ist parallelisierbar, ihr Inhalt wäre ein vierdimensionales Objekt und hätte eine überzählige und somit – in der Physik – überflüssige Dimension und scheidet damit als Modell für einfache Elementarteilchen ebenfalls aus, ebenso die nächsthöhere parallelisierbare 7-Sphäre (es gibt keine weiteren parallelisierbaren Sphären als diese drei).

Die parallelisierbaren Sphären besitzen einen Zusammenhang zu den komplexen und den hyperkomplexen Zahlen:

mit einer komplexen Einheit, i, die 1-Sphäre (den Kreis),

mit drei komplexen Einheiten, i, j, k, mit i*j*k = -1, den Quaternionen, die 3-Sphäre und mit sieben komplexen Einheiten, den Oktonionen oder Cayley-Zahlen, die 7-Sphäre.

Je komplexer die Zahlen werden, desto geringer ist ihre Ordnung. Die komplexen Zahlen können im Gegensatz zu den reellen Zahlen nicht mehr (der Größe nach) geordnet werden, die Multiplikation der Quaternionen ist außerdem nicht kommutativ und die Oktonionen zusätzlich nicht mehr assoziativ.

Wie helfen sich die Mathematiker, um aus einer 2-Sphäre mit dem notwendigen dreidimensionalen Volumen ein parallelisierbares Objekt zu erzeugen? Sie würden die Fläche mit zwei singulären Punkten ausstatten und so zusammendrücken, dass sich die Punkte berühren und sie ausschneiden. Das Ergebnis ist eine parallelisierbare Fläche mit wiederum einem dreidimensionalen Volumen. Nimmt man eine Verformung zu einer gleichmäßigen Gestalt vor, wird daraus ein Torus, welcher topologisch gleich wäre. Er hat das (topologische) Geschlecht eins, die Kugel bekanntlich das Geschlecht Null. Als das grundlegende Modell der einfachen Elementarteilchen ist die Oberfläche des Torus jedoch "unscharf". [©]

• 3.3.1 **Der Spin**

Der Spin eines Elemtarteilchens ist aus dessen Helizität abgeleitet. Ein Teilchen als Torus mit der Helizität/den Spin 0 könnte wieder zu einer Kugel zusammenfließen. Daraus kann man schließen, einfache Teilchen in Gestalt eines Torus ohne Torsion sind nicht möglich. Ist die Torsion ± 1 , führt dies auf eine Helizität von ≥ 1 ; analoges gilt für eine Torsion von ± 2 , ± 3 , ...

Die Torsion bzw. Verdrillung kann man sich auch so vorstellen, als sei in den Torus ein Band gelegt, welches den Rand, also die Oberfläche des Torus berührt oder durchdringt. Dieses Band ist bei einer Helizität von ± 1 bei einem Umlauf um die Hauptachse ebenfalls um $\pm 2\pi$ verdreht. Dabei wird der Raum des Torus in zwei Halbräume mit gleichen Volumina geteilt. Der eine Halbraum enthält genau eine Eig, der andere genau die Anti-Eig.

Ist die Helizität ein mehrfaches von Eins, muss die Verdrillung entsprechend größer sein (siehe die Abbildungen ab S. 77).

Leider kann man auf solch einfache Art nicht die Helizität von 2 erhalten. Seit einigen Jahrzehnten haben Mathematiker und Physiker dafür keine geometrische Darstellung gefunden. *Heinz (Heinrich) Hopf* (1894 – 1971) ist dies mit der Hopf-Faserung und der Hopf-Verschlingung nicht gelungen, geht aber mit den zugrundeliegenden Ideen in die richtige Richtung und findet damit Anwendungen in der Quanten-Theorie.

Da hilft ein Blick auf die Paarerzeugung eines Elektrons und eines Positrons aus einem Photon:

Der Torus des Photons wird – gedacht – entlang des Bandes aufgeschnitten. Die beiden Halbräume können sodann voneinander getrennt werden. Infolge der Torsion sind sie jedoch ineinander verschlungen und können nicht vollständig auseinander gezogen werden. Das ist nur in höherdimensionalen Räumen möglich, mindestens in vier Dimensionen. In Analogie hierzu stelle man sich zwei Kreise in einer Ebene vor, wobei der kleinere vollständig im größeren liegt. In dieser Ebene ist es nicht möglich den kleineren Kreis aus dem größeren zu bewegen, ohne dass sie sich schneiden. In einer zusätzlichen dritten Dimension kann der kleine Kreis über den anderen gehoben und außerhalb des großen auf der Ebene abgelegt werden. Ebenso können die beiden "halben" verschlungenen Toroide, ohne sie aufschneiden zu müssen (was nicht erlaubt ist), in einen Raum mit höherer Dimension auseinander gebracht werden. Der nächste Schritt ist einfach. Jeder "Halbtorus" wird zu einer ∞ verdreht, wobei sich die Torsion nicht ändert. Als nächstes wird diese ∞ zusammengeklappt. Im dreidimensionalen Raum ändert sich jedoch die Torsion um ±1, also zu 0 oder ±2, je nachdem ob nach vorne oder nach hinten geklappt wird. Diese Änderung der Torsion ist jedoch nicht gewollt. In wiederum einer zusätzlichen Raumdimension wird beim umklappen die Torsion nicht geändert. Man muss aber in die Richtung klappen, so dass die "Schnittstellen" des Halbraumes beieinander liegen. Nun wird die vierte Dimension nicht mehr benötigt. Diese Schnittstelle hat die Gestalt eines Möbiusbandes und der Raum des Teilchens die Gestalt eines Doppeltorus (Abb. S. 78 ff)). Man muss um die Hauptachse zweimal herumfahren, wenn man an die gleiche Stelle des Torus gelangen will. Dabei erfährt man die Torsion ± 1 . Nach einer Umdrehung ist das Möbiusband entgegengesetzt orientiert; was ohne Drehung oben war, ist jetzt unten, was vorher außen war, ist jetzt innen; es liegen sich jeder beliebige Punkt und jener nach einer Umfahrung um die Haupt- oder Torusachse gegenüber (wenn der Torus ideal geformt ist). Genau diese Eigenschaft wird mathematisch durch eine Helizität von 2 ausgedrückt. Das Teilchen wird nun durch einen Doppel-Torus mit der Torsion $T=\pm 1$ und zwei Schleifen, Z=2, dargestellt (der zweite, andere Halbraum ergibt in gleicher Weise einen zweischleifigen Torus und zwar mit gleicher Helizität).

Weshalb bilden sich diese Doppelschleifen? Weil ein Elementarteilchen einen vollständigen Raum benötigt, in diesem Modell einen Volltorus.

Die Torsion \mathcal{T} und die Anzahl der Schleifen \mathcal{Z} ergeben die Helizität \mathcal{G} , eine geometrische Größe, mit $\mathcal{G} = \mathcal{Z} / \mathcal{T}$. \mathcal{G} ist eine invariante rationale Zahl, wobei in der Natur nur einige realisiert sind. Haben \mathcal{Z} und \mathcal{T} gemeinsame Teiler, führt dies zur erweiterten Helizität und zum erweiterten Spin. (siehe • 13).

Die Helizität hat die nichtmetrische Richtung \mathbf{I}_s , mit $\mathbf{I}_s \otimes \mathbf{I}_s = 1$. Der geometrische Vektor ist \mathbf{G} , mit $\mathbf{G} = \mathcal{G}^*\mathbf{I}_G$ und ebenfalls $\mathbf{I}_G \otimes \mathbf{I}_G = 1$. \mathbf{I}_G ist stets positiv, \mathbf{I}_s hingegen positiv oder negativ und es ist $\mathbf{I}_s = \pm \mathbf{I}_G$. Die Topologie $\underline{\mathcal{G}}$ wird aus \mathcal{G} bestimmt. Es wird als grundlegend postuliert:

<u>Die Geometrie – der Raum * und die Topologie \mathcal{G} – bestimmt jede Art von einfachen Teilchen eindeutig.</u> (1. Hauptsatz)

Diese Hypothese wird im weiteren Verlauf versucht zu unterlegen und wenn sie sich als zutreffend herausstellen sollte, wäre eine Vision *Albert Einsteins* in Erfüllung gegangen.

Eine Vermutung ist: <u>Die Torus-Hauptachse liegt für alle gewöhnlichen</u> sichtbaren Teilchen im Beobachterraum, die der Teilchen der Dunklen Materie in den sechs Zusatzdimensionen des physikalischen Raumes.

Sie liegt entweder im Beobachterraum oder in den sechs Zusatzdimensionen – hat also keine Komponenten in beiden Teilräumen. Das heißt: Es gibt keine Teilchen, die (teils) zur sichtbaren und (teils) zur unsichtbaren Materie gehören. Der Grund liegt vermutlich in den Eigenschaften der Geometrie dieser Teilräume. Die Dimensionen der Nebenachsen, die senkrecht auf der Hauptachse stehen, sind im Beobachterraum in ihrer Ausdehnung unbegrenzt, die der Zusatzdimensionen sind begrenzt, wenn der Beobachterraum den unbegrenzten Kosmos bildet (siehe hierzu • 7.3.1 Die (effektiv) ungeladenen Bosonen und • 16 Dunkle Materie). Der Spin eines Teilchens ist das Skalarprodukt $G*I_p$, wobei I_p die Richtung des Impulses ist. Der Spin ist keine Invariante, zur Veranschaulichung also weniger geeignet!

Ist der gemeinsame Teiler von \mathcal{Z} und \mathcal{T} gleich 1, handelt es sich um die Grundform, es sind die Teilchen der sogenannten 1. Familie.

Hier wird die vage Vermutung geäußert, dass es sich beim Gemeinsamen Teiler 2 um die Teilchen der 2. Familie und beim gemeinsamen Teiler 4 um die 3. Familie handelt. Die Teilchen der höheren Familien unterscheiden sich im Wesentlichen von denen der 1. Familie durch eine größere Ruhenergie, haben

jedoch die gleiche Ladung und den scheinbar gleichen Spin (Messungen ergeben den "gekürzten" Spin). Das magnetische Moment der Teilchen nimmt bei höherer Familie zu. Zur Zeit kennt man nur Teilchen von der 1. bis zur 3. Familie

Die Räume x zweier Teilchen mit einzahliger Helizität können sich "durchdringen", allgemeiner ausgedrückt, können gemeinsame Unterräume besitzen. Eine Wechselwirkung dieser Teilchen setzt gemeinsame Unterräume voraus. Die Räume der Teilchen mit einer Helizität $\mathcal{Q} \geq 2$ haben eine komplexere Struktur und können nur durch Stöße miteinander wechselwirken, wie aus der klassischen Mechanik bekannt, allerdings in bis zu 9 Dimensionen (siehe auch • 12 Wechselwirkung von Leptonen mit Leptonen ohne Bosonen und • 20, • 20.1 und • 20.2 Das Pauliprinzip – geometrische Deutung) [\blacksquare]

Eine Bemerkung zu Torsion $\mathcal{T}=0$. Da der Ring eines jeden Torus, speziell der Unschärfebereich $\delta \mathbf{x}$, bis an die Hauptachse \mathbf{I}_s heranreicht, wird er im Falle ohne Torsion zu einer Kugel "verschmelzen", d.h. die Topologie würde sich ändern. Der Kugel kann eine Schleife nicht zugeordnet werden; die Schleifenzahl wird $\mathcal{Z}=0$ gesetzt. Die Helizität wäre dann unbestimmt und das Plancksche Wirkungsquantum wäre ohne Bedeutung; man hätte den Bereich der Quantenphysik verlassen und es ginge offensichtlich um einen Körper der klassischen Mechanik. Man kann daraus die Schlussfolgerung ziehen: Es gibt keine einfachen Teilchen mit der Helizität 0, letztlich mit Spin 0, bzw. keine einfachen Teilchen mit der Topologie einer Kugel (2-Sphäre).

Eine weitreichende Eigenschaft der Torsion $\mathcal{T} \neq 0$ und somit der Helizität ungleich Null (wesentlicher) Quanten ist offensichtlich, dass sie (bei genügend hoher Dichte) nicht zu einem einzigen Teilchen zusammenschmelzen können, also separat bleiben. Dadurch bleibt ihre Eigenschaft zur Bildung von Konglomeraten (z.B. Protonen und Neutronen) erhalten.

Bringt man z.B. zwei hochenergetische Elektronen zusammen, so werden sie sich nicht zu einem größeren Elektron mit doppelter Ladung vereinigen, sondern sich quasi klassisch abstoßen (siehe auch • 20.2 Das Pauliprinzip – geometrische Deutung). Die topologischen Eigenschaften eines geometrischen Objektes werden durch seine "Unschärfe" nicht berührt.

• 3.4 Die Zeit

Jedes einfache Elementarteilchen hat seine – eigene – Zeit t, ist nichtmetrisch und kann in eine globale Zeit eingebettet sein. Raum und Zeit bilden auf Grund der Relativitätstheorie in einem Einbettungsraum eine Einheitliche Größe, seine Raum-Zeit. Die darin enthaltene Eig bildet eine unteilbare Einheit, die für alle einfachen Elementarteilchen identisch ist. Innerhalb der Raum-Zeit eines Teilchens gibt es keine Wechselwirkung der darin enthaltenen Eig, mit anderen Worten, keine Selbstwechselwirkung.

Im Raum * und in der Zeit t eines Teilchens existiert keine Wechselwirkung der darin enthaltenen Ladung. (2. Hauptsatz)

<u>Die Wechselwirkung – mit der begrenzten Geschwindigkeit ihrer Ausbreitung – ist die Basis der Relativitätstheorie, weshalb innerhalb eines</u>

Elementar-teilchens die Relativitätstheorie keine Grundlage hat, also nicht angewendet werden kann.

Damit scheint das Problem der Elementarteilchen in der Relativitätstheorie gelöst. Die Zeit t ist nicht unbegrenzt und kann so zu einem Ring geschlossen werden. So hat t eine Bedeutung als abgeschlossene Größe.

Transzendental können Elementarteilchen als punktförmig behandelt werden. *Der Raum des Teilchens selbst*, sein "Inneres", ist von der Metrik der Relativitätstheorie unabhängig, sozusagen ausgenommen.

Im Einbettungsraum kann mit $(\Delta x + \delta x)/(\Delta t + \delta t) = v + \delta v$ die Geschwindigkeit $v = \Delta x/\Delta t$ definiert werden, der die Unschärfe δv anhaftet.

Die Obergrenze der Ausbreitung der Wechselwirkung hat einen klassischen Wert c. Da es sich hierbei um eine Idealisierungen handelt, wird c ohne Unschärfen eingeführt; d.h sie hat einen genau definierten Wert (Geschwindigkeit der Lichtausbreitung im klassischen Vakuum). Ebenso hat das Wirkungsquantum einen klassischen Wert h (ħ). Als fundamentale Größen sollte ihnen (im Rahmen der Physik) der Wert 1 zugeschrieben werden.

Bei Messungen, die im klassischen metrischen Einbettungs-Raum ausgeführt werden, erhält man zwangsläufig mit Unschärfen behaftete Geschwindigkeiten und Wirkungen; was natürlich auch für die Lichtgeschwindigkeit und die Elementarwirkung h (ħ) zutrifft.

Der Zeit-**Punkt** im Einbettungsraum ist der Übergang eines metrischen Zeitintervalls gegen Null, wobei ein Zeitintervall durch Zählung der Zeiteinheiten bestimmt ist. Die Zeiteinheiten werden durch periodische Prozesse definiert.

Die physikalische Zeit entsteht durch Wechsel-Wirkung und besitzt eine Dimension. [■]

• 4 Eigenschaften einfacher Elementarteilchen

Es ist seit längerer Zeit bekannt, dass Elementarteilchen bestimmte Eigenschaften besitzen. Ähnlich klassischer Objekte, wie Festkörper, haben sie eine Energie und einen Impuls, allerdings mit Unschärfen, sind also nichtmetrische Größen. Festkörper haben ein bestimmtes Volumen, im Gegensatz hierzu haben Elementarteilchen einen eigenen Raum. Nur im Falle einer Einbettung in einen übergeordneten Raum haben sie darin ebenfalls ein (nichtmetrisches) Volumen. Analog verhält es sich mit der Zeit; ein Festkörper existiert in der Einbettungs-Zeit, ein Elementarteilchen hat eine eigene Zeit, im Falle einer Einbettung eine Zeitspanne der Existenz. Damit im Zusammenhang steht die Wellennatur (oder Welleneigenschaft) der Teilchen.

Beim Festkörper spielt der Spin praktisch keine Rolle (bei bestimmten komplexen Molekülen in Lebewesen schon), der Eigendrehimpuls seiner Atome ist sehr klein im Vergleich zu seinem gesamten Drehimpuls. Deshalb kann letzterer als metrisch und kontinuierlich betrachtet werden.

4.1 Energie und Impuls eines Elementarteilchens

Es wird für metrische Größen die Allgemeingültigkeit der Allgemeinen und somit der speziellen Relativitätstheorie von *Albert Einstein* angenommen. Dort bilden Energie und Impuls eine Einheit (genauer die Impuls– und die Energiestromdichte, wie im Materietensor T_{ik}). Es werden hier einige grundlegende Beziehungen, die problemlos auf nichtmetrische Größen erweitert werden können, wiederholt (Landafschitz II, § 2 ff).

Die Wirkung W eines Körpers oder Feldes ist die metrische Größe

$$W = \int L dt$$
 (1)

mit der (i.a. nichtmetrischen) Lagrangefunktion L. Sie selbst wird aus allgemeinen Forderungen zur Abhängigkeit von physikalischen Größen und ihren Symmetrien konstruiert. Für einen punktförmigen Körper wählt man

$$L = -E_0 * \sqrt{(1-\beta^2)}, \tag{2}$$

mit der Geschwindigkeit u und β^2 = u^2/c^2 . Damit erhält man für das Wirkungsintegral

$$W = -E_0 * \int \sqrt{(1-\beta^2)} dt = -E_0 / c * \int ds,$$
 (1')

mit dem lorentzinvarianten vierdimensionalen, infinitesimalen Abstand ds, was die Lorentzinvarianz der Wirkung W eines freien Massenpunktes zeigt.

Der Impuls **p** kann aus der Lagrangefunktion L abgeleitet werden:

$$\mathbf{p} = \delta \mathbf{L}/\delta \mathbf{u}$$
, speziell ist $\mathbf{p} = \mathbf{E}_0/\sqrt{(1-\beta^2)^* \mathbf{u}/c^2}$ (3.1, 3.2)

und die Energie erhält man aus

E=
$$\mathbf{p} * \mathbf{u} - \mathbf{L}$$
, speziell ist E = E₀/ $\sqrt{(1-β^2)}$ (4.1, 4.2)

und damit den bedeutenden Zusammenhang von Impuls und Energie:

$$\mathbf{p} = \mathbf{E}\mathbf{u}/\mathbf{c}^2. \tag{4.3}$$

Aus dieser Gleichung (4.3) erhält man durch quadrieren die ebenfalls bedeutende Gleichung E(p), die Energie als Funktion des Impulses, die sogenannte Hamiltonfunktion (eines freien Massepunktes):

$$E^2 = E_0^2 + p^2 c^2. (5)$$

Für die Energie E(p) folgen daraus zwei Lösungszweige

$$E_{I}(p) = +\sqrt{(E_0^2 + p^2c^2)} \text{ für } E_0 > 0,$$
 (6.1)

$$E_{II}(p) = -\sqrt{(E_0^2 + p^2c^2)} \text{ für } E_0 < 0.$$
(6.2)

Es ist nicht möglich zwischen beiden Kurvenzweigen zu wechseln, also nicht zwischen $E_0 > 0$ und $E_0 < 0$. Aus der Erfahrung sind Teilchen mit $E_0 < 0$ nicht bekannt, für Elementarteilchen wird dies jedoch nicht ausgeschlossen.

In der Newtonschen Mechanik, die für kleine Geschwindigkeiten $\beta << 1$ gilt, ist für den Impuls oder der Bewegungsgröße die Masse, besser gesagt die Ruhmasse m_0 in $\mathbf{p} = m_0 * \mathbf{u}$ eingeführt. Durch Vergleich mit der relativistischen Gleichung (3.2) erhält man

$$m_0 = E_0/c^2$$
, allgemeiner durch Multiplikation mit $1/\sqrt{(1-\beta^2)}$ (7.1)

$$E = m c^2$$
, für $\beta^2 < 1$, (7.2)

die häufig zitierte und populär wenig verstandene Formel von *Albert Einstein*. Darin ist E die dynamische Energie und m die dynamische Masse, für die

4.2) und
$$m = m_0/\sqrt{(1-\beta^2)}$$
 (7.3)

gelten. Es ist falsch zu sagen, Masse entspricht oder ist gleich Energie. Zudem kann Masse nicht vollständig in andere Energieformen umgewandelt werden.

Hier besitzt die Energie eine grundlegendere Bedeutung als die Masse. Letztere wird lediglich zur Beschreibung der Dynamik, der Bahnkurven, der Teilchen/Körper in Mehrteilchen/Mehrkörpersystemen in der *Newton*schen Mechanik eingeführt. Nach hiesigem Verständnis ist m lediglich eine Abkürzung für E/c² im Beobachterraum und bekommt nur im Übergang zur klassischen Mechanik ihre Bedeutung.

4.2 Die Ruhenergie eines Elementarteilchens

Im vorangegangenen Abschnitt wurde die Ruhenergie eingeführt, jedoch weder definiert noch erläutert. Die Energie als physikalische Größe gibt es in mannigfacher Weise: als kinetische, potentielle, die der Bindung, speziell der chemischen, die der Strahlung verschiedener Art, thermische, elektrische und andere, aber auch die jedem Stoff immanente Ruhenergie. Letztere spielt hier eine herausragende Rolle. Eine allgemeingültige Definition scheint es nicht zu geben. Bis zu einem durch den 2. Hauptsatz der Thermodynamik nicht überschreitbarem Maß kann eine solche Form in eine andere umgewandelt – so kann Energie weder erzeugt noch vernichtet werden.

Die Ruhenergie \mathbf{E}_0 eines einfachen und freien Teilchens wird hier durch die Norm $\|F\|$ einer Ladung, d.h. einer Größe der Wechselwirkung, in dessen Raum bestimmt: $\mathbf{E}_0 = \pm \|F\|$. (3. Hauptsatz)

Dies muss in einer Weise festgelegt werden, dass bei $\mathbf{E}_0 > 0$ im Übergang zu metrischen Größen E entsteht (infolge des Korrespondenz-Prinzips). Die Norm wird häufig durch die Bildung einer quadratischen Form aus den Eig/Ladungen und aus Größen, die deren Wechselwirkungen beschreiben, festgelegt. Man denke an die Ableitung der Energie in der Newtonschen Mechanik oder in der Maxwellschen Elektrodynamik.

Das Vorzeichen der Energie kann durch eine Spiegelung der Zeit $\leftarrow \rightarrow - \pm$ umgekehrt werden (siehe • 6.1).

Da in F nichtklassische Größen wie **x** und eventuell **t** eingehen, sind ||F|| und **E** im Einbettungsraum mit Unschärfen behaftet. [■]

• 4.3 Die Wirkung eines Elementarteilchens

Die allgemeinste physikalische Größe ist die Wirkung (siehe • 2.2, S. 4). Alle Materie hat ein bestimmtes Maß an innerer Wirkung. <u>Die Wirkung ist keine Erhaltungsgröße!</u> In Einheiten des Wirkungsquantums ist sie bei Festkörpern sehr groß, bei Elementarteilchen genau Eins in Einheiten von h. Es wäre also klarer, nicht von Elementarteilchen zu sprechen, sondern schlicht von Quanten. Es wird postuliert:

Das Maß der Wirkung jedes einfachen Teilchens ist ħ. (4. Hauptsatz)

Die physikalische Größe Wirkung kann auf dreierlei Weise in andere physikalische Größen "aufgespaltet" werden:

$$\mathbf{E} \otimes \mathbf{t} = \pm \hbar, \tag{8.1}$$

$$\mathbf{p} \otimes \mathbf{x} = \pm \hbar, \tag{8.2}$$

$$\mathbf{s} \otimes \mathbf{G} = \pm \hbar, \tag{8.3}$$

in die Zeit ${\bf t}$, den Raum ${\bf x}$ und den geometrischen Vektor ${\bf G}$ (${\bf G}$ mit Unschärfe). Die Zeit ${\bf t}$ besitzt eine (einzige) Dimension, da die Energie ${\bf E}$ eine einkompo-

nentige Größe ist (näheres in • 4.1 & 4.2). Der Raum * ist in der Anzahl der Dimensionen nicht festgelegt, nach unserer Erfahrung muss er mindestens die Anzahl drei haben. Festgelegt ist nur die Dimension, in welche die Bewegungsgröße \mathbf{p} gerichtet ist. Die Richtung des Impulses ist $\mathbf{I}_{\mathbf{p}}$, also $\mathbf{I}_{\mathbf{p}} = \mathbf{p}/\mathbf{p}$, mit $\mathbf{I}_{\mathbf{p}} \otimes \mathbf{I}_{\mathbf{p}} = \mathbf{1}$ (das Skalarprodukt von $\mathbf{I}_{\mathbf{p}}$ ist eine nichtmetrische Größe $\mathbf{1}$) und somit auch die ausgezeichnete Dimension im Raum des Teilchens. $\mathbf{I}_{\mathbf{p}}$ ist wie der Impuls sowohl positiv als auch negativ.

Raum * und Zeit † können beide in eine Raum-Zeit eingebettet sein. Allerdings ergibt nur in einem (metrischen) Einbettungsraum die Vereinigung von Raum * und Zeit †, also von (8.1) und (8.2), zur Raum-Zeit einen tieferen Sinn. Die Dynamik, ausgedrückt durch die Bewegungsgröße, ist eine immanente Eigenschaft eines Teilchens. Da zu jeder Eig (also einer speziellen Ladung) eine Gegen- oder Anti-Eig existiert, stehen vor † beide Vorzeichen ± (man könnte auch sagen, die Eig wechselwirkt mit dem Maß + †, die Antieig mit

Die dritte Relation (8.3) ist eine Beziehung mit der Größe eines Drehimpulses, nämlich die des Spin-Vektors \mathbf{s} und des geometrischen Vektors \mathbf{G} . \mathbf{G} drückt die Eigenschaften der Geometrie des Raumes \mathbf{x} des Teilchens aus. Mit $\mathbf{G} = \mathcal{F}\mathbf{I}_{\mathbf{G}}$ (siehe • 3.3) und $\mathbf{s} = \hat{\mathbf{s}}\,\mathbf{I}_{\mathbf{s}}$ kann (8.3) einfacher als

$$\hat{s} * \mathcal{G} = \pm \hbar$$
 oder $\hat{s} = \mathbf{s} \otimes \mathbf{I}_{s} = (\mathcal{I} \mathcal{Z}) * \hbar$ (8.3′, 8.3′′)

geschrieben werden, wobei für die Antiteilchen ein negativer Impuls gewählt ist. \mathbf{I}_s wird parallel zu $\mathbf{I}_p = \mathbf{p}/p$ angenommen, d.h. es muss gelten:

$$\mathbf{I}_{p} = (\mathbf{I}_{s} \otimes \mathbf{I}_{p}) \otimes \mathbf{I}_{s} \text{ und } \mathbf{I}_{s} = (\mathbf{I}_{s} \otimes \mathbf{I}_{p}) \otimes \mathbf{I}_{p} . \tag{9}$$

Hier wird die **Helizität** \mathscr{S} als die ursprüngliche Größe angesehen, da sie sich unmittelbar aus der Raumstruktur eines Teilchens ergibt und eine Erhaltungsgröße ist. <u>Der Spin ist von der Helizität abgeleitet</u>, indem \hbar mit der Impulsrichtung \mathbf{I}_p multipliziert und durch die Helizität dividiert wird.

Die obigen Relationen (8.1 bis (8.3) bilden die Grundlage des hier dargelegten Modells zur Theorie der Elementarteilchen. Man erkennt, dass sie unverändert/invariant sind bei Ladungskonjugation (C-Transformation), plus Umkehrung aller Raumkoordinaten (Spiegelung oder Paritäts-Transformation P), plus Zeitspiegelung (T-Transformation). <u>Die grundlegenden Identitäten sind gegenüber einer CPT-Transformation invariant.</u>

Außerdem kann man aus diesen Relationen erkennen:

dem Maß -ħ).

Im Falle von A=0, $\delta A\neq 0$ und B=0, $\delta B\neq 0$ kann eine Quantenfluktuation vorliegen. Allgemein hätte man $\delta A*\delta B=C+\delta C$. Nach obiger Definition muss C=0 sein. Andernfalls hätte man mit $C=\pm\hbar$ die Erzeugung *eines* Quantums aus einer Quantenfluktuation. Der Fall mit $\delta C\neq 0$ ist mit $\delta C=\pm\hbar$ eine Vakuumfluktuation. Die Existenz solcher Fluktuationen wurde im Jahr

1948 von *Hendrik Casimir* (1909 – 2000) vorhergesagt und 1956 durch Boris Derjaguin, I.I. Abrikosowa und Jewgeni M. Lifschitz experimentelle bestätigt.

• 4.4 Teilchen mit Ruhenergie und ihre Wechselwirkung

Für ein Teilchen mit Ruhenergie gibt es im Einbettungsraum ein Ruhsystem. Darin gilt E_0^* $\Delta t = \pm \hbar$. Die Zeit Δt ist die charakteristische Lebensdauer bzw. Eigenzeit des Teilchens (für ein Elektron rund 1,288*10⁻²¹ s). Danach müsste es zerfallen, was wegen dessen "Elementarität" nicht verständlich ist. Die einzige "Überlebensmöglichkeit" besteht in Wechselwirkungen mit anderen Teilchen. Diese Wechselwirkung wiederum ist nur mit Teilchen möglich, die die gleiche Eig und die zugehörige Anti-Eig wie das Teilchen selbst hat. Dies ist das (zugehörige) Boson. Innerhalb der Eigenzeit muss ein solches Boson absorbiert und wieder emittiert werden, wenn das Teilchen sich nicht ändern soll. Dies gilt nicht nur im Einbettungsraum, sondern (im Raum und) in der Zeit des Teilchens selbst:

<u>In der Zeit t eines freien Teilchens mit Ruhenergie wird ein WW-Teilchen (Boson) absorbiert und eines emittiert.</u>(5. Hauptsatz)

Da die Ruhenergie eines Teilchens dessen Eigen-Zeit bestimmt, wird damit im Einbettungsraum die Anzahl der Wechselwirkungsteilchen pro Zeiteinheit festgelegt. Mit anderen Worten: <u>Die Wechselwirkung eines Teilchens wird durch Zählen seiner Bosonen vollständig beschrieben</u> (siehe auch • 12 Wechselwirkung von Leptonen mit Leptonen ohne Bosonen).

In der klassischen Physik stellen diese Bosonen mit einer bestimmten Eig das Feld des Teilchens dar. Von einem Feld kann man sprechen, wenn in einem betrachteten Zeitraum die Anzahl der Bosonen groß gegen 1 ist. Ein Teilchen mit seiner speziellen Eig ist untrennbar mit "seinem" Feld verbunden. Das "nackte" Teilchen einerseits und sein Feld haben durchaus unterschiedliche Eigenschaften.

4 5 Elementarteilchen als Welle

In der populären Literatur wird häufig über den Welle-Teilchen-Dualismus geschrieben und die Auffassung vertreten, das Teilchen sei manchmal eben Teilchen, ein anderes mal Welle, je nach Experiment und Fragestellung. Ein solches Bild ist längst überholt. Man kann heutzutage sagen: das Teilchen ist ein Quant und dieses Quant hat Teilchen- und Wellencharakter (zuerst von Louis de Broglie (1892 - 1987) im Jahre 1924 im Rahmen seiner Doktorarbeit eingeführt). Es ist in weiten Bereichen gut als Wellenpaket zu beschreiben. Ist das Wellenpaket groß gegenüber der Wellenlänge, überwiegt der Wellencharakter, wie man es vom Licht kennt. Ist das Wellenpaket klein gegenüber der Wellenlänge, überwiegt der Teilchencharakter, wie man es sich vom langsamen Elektron (u « c) vorstellt.

Will man die Quanten als Wellen behandeln, muss zuerst einmal dieses Quant in einem übergeordnetem Raum eingebettet sein, speziell im Beobachterraum. Damit können entsprechenden Begriffe, wie Wellenlänge und Frequenz, eingeführt werden. Diese setzen wiederum die Einführung von Maßstäben und physikalischen Einheiten voraus.

Befindet sich ein Elementarteilchen in einem metrischen Raum, erhält man darin die Beziehung

$$(E + \delta E)^*(\Delta t + \delta t) = \pm \hbar, \tag{10}$$

(wegen der Unschärfen δ müsste eine Verknüpfung \otimes stehen, zur Übersichtlichkeit wird hier einheitlich eine einfache Multiplikation geschrieben). In einer metrischen Zeit kann die Zeiteinheit t_0 mittels $\Delta t = w * t_0$ mit der reellen Zahl w eingeführt werden. Für die Schwingungsdauer T gilt dann $T = \Delta t/2\pi$. Mit der Kreis-Frequenz $\omega = 1/wt_0 = 1/\Delta t$, ($\delta t = \delta w * t_0$, $\delta \omega = -\omega^2 * \delta t$), erhält man

$$E + \delta E = \pm (\omega + \delta \omega) * h = \pm (v + \delta v) * h, oder$$
 (11)

$$E = \pm \omega * \hbar = \pm v * h$$
, und $\delta E = \pm \delta \omega * \hbar = \pm \delta v * h$, (11.1, 11.2)

mit der von A. Einstein speziell für Photonen wegweisend eingeführten Beziehung E = h*v mit der Frequenz $v = \omega/2\pi$ (dort ohne Unschärfen). Die Energie eines Quants wird (im Einbettungsraum) durch einen einzigen Parameter bestimmt, die mit einer Unschärfe δE behaftet ist. Die Größe E und die zugehörige Unschärfe δE werden als voneinander unabhängig angesehen, weshalb die Gln. 11.1 und 11.2 geschrieben werden können. Die Anzahl der Schwingungen ist hier nicht festgelegt.

Aus der zweiten Relation für den Impuls und den Raum folgt im Einbettungsraum

$$(\mathbf{p} + \delta \mathbf{p})^* (\Delta \mathbf{x} + \delta \mathbf{x}) = \pm \hbar. \tag{12}$$

Führt man in einem metrischen Raum die Längeneinheit l_0 mit dem reellen Vektor **K** mittels $\Delta \mathbf{x} = \mathbf{K}^* l_0$ ein, erhält man mit der Schwingungszahl

$$\mathbf{k} = 1/\Delta \mathbf{x} = 1/\mathbf{K}\mathbf{l}_0$$

$$\mathbf{p} + \delta \mathbf{p} = \pm (\mathbf{k} + \delta \mathbf{k})^* \, \text{h, oder}$$
 (13)

$$\mathbf{p} = \pm \mathbf{k}^* \, \hbar$$
, und $\delta \mathbf{p} = \pm \delta \mathbf{k}^* \, \hbar$, (13.1, 13.2)

Mit der Schwingungslänge λ , $\lambda = 2\pi/k$ und der Länge $\Delta x_p = \Delta x * I_p$,

 $\Delta x_p = \lambda/2\pi$ und $\delta x_p = \delta \lambda/2\pi$, erhält man

$$|\mathbf{p} + \delta \mathbf{p}|^*(\lambda + \delta \lambda) = \pm \mathbf{h}. \tag{14}$$

Die Bewegungsgröße eines Quants ist in einem Einbettungsraum mit einem Parameter, der Schwingungszahl bzw. der Schwingungslänge, festgelegt.

Maßstäbe, hier t₀ und l₀, können als Größen ohne Unschärfe nur in metrischen Räumen eingeführt werden.

Ist das schwingende Quant eine Welle? Es ist nur dann eine Welle, wenn für Frequenz und Schwingungszahl bzw. Schwingungslänge die Relation

$$\omega/k = v^*\lambda = c_{ph} \qquad (=\Delta x/\Delta t) \tag{15}$$

mit der Phasen-Geschwindigkeit c_{ph} erfüllt ist. Aus Schwingungszahl und Schwingungslänge werden Wellenzahl bzw. Wellenlänge. Ist c_{ph} eine Konstante, hängt die Geschwindigkeit der Welle also weder von der Frequenz noch der Wellenzahl (oder Wellenlänge) ab, so hat die Welle keine Dispersion. Eine solche Welle ist in Ausbreitungsrichtung unendlich. In der Natur gibt es nur transzendental unendliche Wellen, sie sind in Ausbreitungsrichtung begrenzt; es sind **Wellenpakete**, die notwendigerweise ein Frequenz- und Wellenzahlspektrum haben. Hat das Wellenpaket die Unschärfen $\delta \omega$, δk , oder δv , $\delta \lambda$, so

ist die Anzahl der Schwingungen

$$N \approx \omega/\delta\omega = E/\delta E = k/\delta k \text{ usw.}$$
 (16)

Die Länge des Wellenpaketes wird von der Wellenlänge und der Anzahl der Schwingungen bestimmt und wird mit der **Ausdehnung** des Quants in Impulsrichtung gleichgesetzt. In der Optik entspricht dies im Einbettungsraum der Kohärenz-Länge.

Man kann für N jedoch die Wellenlänge des Paketes λ_{pa} auf die Wellenlänge λ beziehen und erhält damit N = u/c, ein Wert, der immer kleiner 1 ist. D. h., <u>das Wellenpaket eines Teilchens ist kürzer als dessen Wellenlänge</u>, erst für Geschwindigkeiten nahe der Grenzgeschwindigkeit c erreicht es die Ausdehnung einer Wellenlänge und besitzt Wellencharakter. Bei einem ruhenden oder langsam bewegten Teilchen überwiegt der Teilchencharakter.

0

Die Gruppengeschwindigkeit u_{gr} wird mit der Teilchengeschwindigkeit u identifiziert. Mit den Gleichungen $E = \pm \omega^* \hbar = \pm v^* \hbar$ (11.1), $\mathbf{p} = \pm \mathbf{k}^* \hbar$ bzw. $\mathbf{p} = \pm \mathbf{k}^* \hbar$ (13.1) erhält man $\mathbf{c}_{ph} = E/\mathbf{p}$ und weiter mit der Gleichung $\mathbf{p} = E\mathbf{u}/c^2$ bzw. $\mathbf{p}c^2 = E^*\mathbf{u}$ (4.3) folgt die Gruppengeschwindigkeit $u_{gr} = \mathbf{u} = \mathbf{p}c^2/E$ und damit $\mathbf{c}_{ph}^* \mathbf{u}_{gr} = \mathbf{c}^2$. Letztere ist die für Wellenpakete bekannte Gleichung.

Diese Aussage kann durch Lösung der Relation für Wellenpakete (siehe z.B. Gerthsen, Physik, *Christian Gerthsen* (1894 - 1956))

$$u \equiv u_{gr} = -\lambda^2 d\nu/d\lambda = d\omega/dk, \tag{17}$$

ebenfalls unter Verwendung der Gleichungen (11.1), (13.1) und (4.3), $E = E_0/\sqrt{(1-\beta^2)}$ (4.2), bestätigt werden.

Aus (11.1) und (13.1) folgen $d\omega = \pm dE/\hbar$ und $dk = \pm dp/\hbar$, und mit $u = pc^2/E$, (4.3) erhält die Relation (16) die Gestalt

$$dE/dp = pc^2/E$$
, also $d(E^2) = c^2d(p^2)$, (17.1, 17.2)

mit der Lösung $E^2 = p^2c^2 + c_k$. Die Integrationskonstante c_k ergibt sich, für p=0 zu E_0^2 , womit man die bereits bekannte Hamiltongleichung (5) erhält.

Die dynamische Energie ist mit der Ruhenergie durch $E = E_0/\sqrt{(1-u^2/c^2)}$ (4.2) verbunden. Für u = c muss $E_0 \equiv 0$ gesetzt werden. Die Energie E ist in diesem Fall unbestimmt, mit anderen Worten beliebig. Für Quanten mit Lichtgeschwindigkeit wird

$$E = pc$$
, für $u = c$ (und $E_0 \equiv 0$), (18)
d.h. bei bestimmter Energie haben Teilchen mit Lichtgeschwindigkeit den

d.h. bei bestimmter Energie haben Teilchen mit Lichtgeschwindigkeit den maximalen Impuls.

Es gibt hier keinen Widerspruch zwischen den allgemeinen Formeln der relativistischen Physik für Punktteilchen und den fundamentalen Beziehungen (8) der Teilchenphysik, wenn die Teilchen als Wellenpakete angesehen werden.

Ein Quant ohne Ruhenergie wird alleine durch die fundamentale Naturgröße h festgelegt, breitet sich mit der Grenz-Geschwindigkeit c aus und schwingt mit einer beliebigen, aber festen Frequenz mit gewisser Unschärfe.

Im Falle u < c muss $c_{ph} > c$ sein. Letztere ist kein Widerspruch zu den grundsätzlichen Voraussetzungen, da c_{ph} keine Wechselwirkung beschreibt (wohl aber u).

Aus den Gleichungen $p*\lambda = h$ (14), $p = Eu/c^2$ (4.3) und $E = mc^2$ (7.2) folgt die de Broglie-Beziehung

$$\lambda = h/p = h/mu, \text{ bzw. } \Delta x = \hbar/mu = \hbar * \sqrt{(1-\beta^2)/m_0 u}$$
 (19)

für die de Broglie-Wellenlänge, die durch Beugungsexperimente in hoher Genauigkeit bestätigt ist.

Es ist nur formal $\Delta x_p/\Delta t = c$ eine Geschwindigkeit, denn $(\Delta x_s c^* \Delta t)$ sind die Raum-Zeit des Quants im Beobachter-Raum. Der vierdimensionale Abstand des Raumes in Richtung des Impulses und der Zeit (mit der Minkowski-Metrik) des Quants ist somit Null. Diese Raum-Zeit kann sich mit derjenigen anderer Quanten/Teilchen überschneiden. Ist das andere Teilchen vollständig im Quant enthalten, besitzt es darin eine Geschwindigkeit.

• 4.6 Elementarteilchen klassisch betrachtet

Die klassische Physik zeigt einen Weg, die Frage nach der Länge 1 eines Teilchens im Beobachterraum zu beantworten. Eine Wellenlänge eines freien Quants, wie die de Broglie-Wellenlänge $\lambda = h/mu$, kann prinzipiell nicht als Maß für die Ausdehnung eines Teilchens herangezogen werden. Als einziger brauchbare Zusammenhang für die Ausdehnung in Bewegungsrichtung eines Quants scheint

$$1 = \kappa^* \mathbf{c}^* \Delta \mathbf{t} = \kappa^* \mathbf{c}/\omega, \qquad \kappa \ge 1, \text{ ist ein Formfaktor},$$
zu sein. Man erhält

$$1 = \kappa * \hbar / mc$$
, bzw. die Wellenlänge $\lambda = \kappa * \hbar / mc$. (21.1)

Diese Beziehung scheint sinnvoll, da sie insbesondere die richtige Abhängigkeit von der Geschwindigkeit u des Teilchens enthält

$$l = \kappa^*(h/m_0c)^*\sqrt{(1-u^2/c^2)}$$
, bzw. $\lambda_e = \kappa^*(h/m_0c)^*\sqrt{(1-u^2/c^2)}$, (21.2) d.h. die Längenkontraktion beschreibt. Diese Größen sind für $\kappa = 1$ als Comptonlänge bzw. Comptonwellenlänge bekannt,

$$l_{\rm C} = \hbar/mc = \hbar c/E \text{ und } \lambda_{\rm C} = \hbar/mc = \hbar c/E, \tag{21.3}$$

 (λ_C) ist gleich der Wellenlänge eines Photons, welches die gleiche Energie wie das Teilchen hat). Die grundlegende Bedeutung der Comptonlänge ist auch daran zu erkennen, weil sie als charakteristische Länge in die Dirac-Gleichung des Elektrons eingeht (üblicherweise steht dort m_0 , da \hbar und c Eins gesetzt worden sind – was zu einem falschen Verständnis führen kann); *Paul Adrien Maurice Dirac* (* 1902, † 1984).

$$i^* l_c \gamma^\mu \partial_\mu \Psi - \Psi = 0, \ \mu = 0, \ 1, \ 2, \ 3, \ 4, \eqno(*)$$

wobei γ^{μ} 4x4 Gamma-Matritzen sind und Ψ der 4-Komponenten Dirac-Spinor (Wellenfunktion der *Wahrscheinlichkeites-Dichten*).

Die Comptonlänge $l_{\mathbb{C}}$ erscheint hier somit als die charakteristische Länge.

Die Teilchen mit Ruhenergie bestehen aus zwei Komponenten, dem "nackten" Teilchen, welches die Ladung(en) darstellt, und den zugehörigen Wechselwirkungsteilchen, den Bosonen, die (bei genügend großer Anzahl) das Feld des Teilchens darstellen. Aus diesem Grund kann die Ruhenergie E_0 in zwei Teilen dargestellt werden; der Anteil der Ladung E_w und der des Feldes E_{el} . Offensichtlich ist die Energie eines Quants auf diese beiden Anteile aufgeteilt, gewissermaßen dessen innere und äußere Energie:

$$E_w = (1-\alpha)*E_0 \text{ und } E_{el} = \alpha*E_0.$$

Die Stärke der Wechselwirkung einer Ladung wird somit durch α ausgedrückt und in der Physik als Kopplungskonstante bezeichnet. Im Allgemei-

nen ist α keine Konstante; im Nahbereich des Teilchens kann sie stark abweichen.

Ist die Stärke eines Feldes einer Messung direkt zugänglich, kann man unter einigen idealisierenden Annahmen, z.B. einer Kugelgestalt des "nackten" Teilchens und dessen Radius, die Energie des Feldes einfach berechnen. Bei andererseits bekannter Ruhenergie des (Gesamt-)Teilchens kann die interessante Kopplungskonstante berechnet werden.

Für einen dreidimensionalen Raum ist die Feld-Energie E_{el} eines Quants mit der Gestalt einer Kugel mit dem Radius r und der Ladung e

$$E_{el} = e^2/r.$$
 (22)

Geht man einmal davon aus, dass das "nackte" Teilchen keine Energie besitzt, sondern die gesamte Energie E_0 des Teilchens im Feld enthalten ist, dann ist der sogenannte klassische Radius r_{kl} ein Maß für die gesamte Ruhenergie bzw. für die Ruhmasse: $r_{kl} = e^2/E_0 = e^2/m_0c^2$. Für einen eher realistischen Wert der Energie des Feldes kann man als Radius r_{el} die halbe Comptonlänge mit Formfaktor verwenden

$$r_{el} = \kappa/2*(\hbar c/E_0) = \kappa/2*(\hbar/m_0 c)$$
 (23.1)

und somit

$$E_{el} = 2/\kappa^* e^{2*} E_0 / hc.$$
 (23.2)

Das Verhältnis der Feldenergie E_{el} zur Gesamtenergie E₀ ist die Kopplungskonstante der Ladung e

$$\alpha_{\rm e} = 2/\kappa^* e^2/\hbar c. \tag{24.1}$$

Das ist für das Elektron und den Formfaktor $\kappa = 2$ die bekannte Sommerfeldsche Feinstrukturkonstante (*Arnold Sommerfeld*, 1868 –1951)

$$\alpha_{\rm S} = e^2/\hbar c. \tag{24.2}$$

Es erhebt sich die Frage, ob bei der Beugung von Elektronen das elektrische Feld beteiligt ist. Ist das Feld nicht beteiligt, wie vermutet, müsste die de Broglie-Wellenlänge um den Faktor $1/(1-\alpha) \approx 1,00735099534$ vergrößert sein, was experimentell nachprüfbar wäre (mit dem gemessenen Zahlenwert von α_s = 1/137,036 (neuer Wert 1/137,035999046(27),2018)).

Dies kann für Räume höherer Dimensionen, N, ausgeweitet werden, soweit es sich um Wechselwirkungsteilchen ohne Ruhenergie handelt. Gl. (22) für die Energie des Feldes wird dann $E_{el} = e^2/r^{(N-2)}$; die Beziehung für die Comptonlänge als eindimensionale Größe ändert sich nicht. Man muss nur die Ruhenergie des Teilchens kennen.

Haben für eine Ladung die Wechselwirkungsteilchen eine Ruhenergie E_0 , so haben sie eine endliche Eigenzeit $\Delta t = \hbar/E_0$ und benötigen ebenfalls ein Feld. Außerdem führt dies zu einer endlichen Reichweite Δl_{ww} ,

$$\frac{\Delta l_{WW} < c^* \Delta t = l_C,}{\Delta l_{WW}} = \frac{1}{2} \left(\frac{1}{2} \right)$$
(25)

der Wechselwirkung, wofür es keine Beziehung der Form der Gl. (22) gibt. [■]

• 5 Πανδυνατο (Pandynato)

Spätestens seit *Ernst Mach* ist es angebracht davon auszugehen, dass es den physikalischen Raum ohne Materie nicht gibt (siehe • 3.2.1). Ebenso ist es offensichtlich nicht denkbar von einem absoluten NICHTS auszugehen.

Denkbar ist ein **Pandynato**. Unter Pandynato versteht man den Ausgangszustand aller Materie ohne jegliche Materie, ohne Raum und ohne Zeit. Allerdings mit der Eigenschaft, Ereignisse hervorbringen zu können. Das Pandynato ist die Übertragung von das Allmögliche in die griechische Sprache.⁵

Insbesondere kann ein Ereignis eine **Quanten-Fluktuation** sein, etwa ein Quant mit +h und eines mit −h. [□]

6 Das Photon

Das Photon ist das universelle Elementarteilchen (Quant), Symbol γ . Es bewegt sich mit der Grenzgeschwindigkeit c der elektromagnetischen Wechselwirkung (Lichtgeschwindigkeit im Vakuum) und hat damit kein Ruhsystem und folglich keine Ruhenergie bzw. Ruhmasse. Es ist bekannt, dass alle mit Ruhenergie (Ruhmasse) behafteten Teilchen mit ihren Antiteilchen annihilieren können, wobei ein Photon oder mehrere Photonen entstehen (gemeint ist hier die "gewöhnliche" Materie, nicht die sogenannte Dunkle Energie). Man muss daraus den Schluss ziehen, dass in Umkehrung dieser Tatsache das Photon virtuell alle existierenden Ladungen enthält; insbesondere neben der Eig die Antieig, die sich außerhalb des Photonenraumes gegenseitig aufheben und somit dort als virtuelle Eigenschaften erscheinen. Der eigentliche Grund dafür, dass das Photon keine Ruhenergie besitzt besteht darin, dass Eig und Antieig eine vollständige Eig bilden und im Photonenraum getrennt sind, je einen Halbraum einnehmen, denn dadurch ist $\mathbf{E}_0 = \|\mathbf{F}\| = \|\mathbf{F}^+\| + \|\mathbf{F}^-\| = 0$.

• 6.1 Entstehung eines Photonenpaares

Wie für alle Quanten gelten für ein Photon die grundlegenden Relationen (• 4.3, (8)). Da Photonen ein vollständiges Ladungssystem besitzen, ein Eig und ein Anti-Eig, sind sie gegenüber einer Ladungskonjugation C invariant. Das bedeutet, die beiden Vorzeichen \pm von \hbar können nicht für Photon und Antiphoton stehen. Offenbar gibt es zwei Formen von Photonen, die sich ebenso wie Teilchen und Antiteilchen unterscheiden: Photonen können sowohl eine positive als auch eine negative Raum-Zeit besitzen, und eine positive als auch negative innere geometrische Struktur, der Helizität $\mathcal S$. Wie bei allen Teilchen kann in einem Einbettungsraum der Impuls in positive als auch in negative Raum-Koordinaten gerichtet sein, ebenso in positive als auch negative Zeitrichtung, hierbei gemäß dem Vorzeichen von \hbar . In einer Photonenwelt

⁵ Das griechische Wort Pandynato ist für unsere Zwecke gebildet und in germanischen Sprachen leider etwas sperrig; ein lateinisches ist nicht zu finden, da es keinen Ausdruck für Möglichkeit/möglich gibt. Am nächsten käme omnipotens, als Substantiv omnipotentia, welches allmächtig bzw. das Allmächtige bedeutet und nicht den Kern der Aussage des alle Möglichkeiten beinhaltendem trifft (nach Dr. Ursula Novotny, Leipzig). Außerdem ist die Eigenschaft omnipotens in der abendländischen bzw. christlichen Kultur Gott zugeschrieben.

sind positive und negative Raum-Zeit gleichberechtigt. Die Helizität \mathcal{G} entspricht in der Elektrodynamik einer rechts- oder linkspolarisierten Welle.

Virtuelle Photonen entstehen durch eine Fluktuation. Durch eine Fluktuation können aber auch zwei reelle Photonen γ_1 und γ_2 aus dem Pandynato entstehen. Im ersten Fall mit unterschiedlichem Vorzeichen von \hbar ist

$$\mathbf{E}_{4} \otimes \mathbf{t}_{4} + \mathbf{E}_{2} \otimes \mathbf{t}_{2} = 0, \tag{1.1}$$

$$\mathbf{p}_1 \otimes \mathbf{x}_1 + \mathbf{p}_2 \otimes \mathbf{x}_2 = 0, \tag{1.2}$$

$$\hat{\mathbf{s}}_1 * \mathcal{G}_1 + \hat{\mathbf{s}}_2 * \mathcal{G}_2 = 0. \tag{1.3}$$

Dazu wird die Erhaltung von Energie, Impuls und Helizität $\mathcal G$ verlangt, also

$$\mathbf{E}_{1} + \mathbf{E}_{2} = 0, \quad \mathbf{p}_{1} + \mathbf{p}_{2} = 0, \quad \hat{\mathbf{s}}_{1} + \hat{\mathbf{s}}_{2} = 0, \quad (2.1, 2.2, 2.3)$$

woraus

$$\mathbf{t}_2 = \mathbf{t}_4, \qquad \mathbf{x}_2 = \mathbf{x}_4, \qquad \mathcal{G}_2 = \mathcal{G}_1. \qquad (3.1, 3.2, 3.3, 3.4)$$

folgen; das sind Größen, die unbestimmt sind und positiv oder negativ sein können, wenn man beispielsweise bei $\mathbf{a}\otimes\mathbf{b}>0$ neben $\mathbf{a},\,\mathbf{b}>0$ auch $\mathbf{a},\,\mathbf{b}<0$ zulässt. Energie, Impuls und Helizität eines Photons sind positiv, die des anderen negativ; ihre Spins sind jedoch antiparallel, da die Richtungen I_p der Impulse entgegengesetzt sind. Die Wirkungen beider Photonen sind einander entgegengesetzt. Daraus folgt, dass die Summe beider verschwindet, d.h. hier wird die Wirkung erhalten.

Geht man im 2. Fall davon aus, das beide Photonen γ_1 und γ_2 bei \hbar gleiches Vorzeichen haben, führt dies auf

$$\mathbf{E}_4 \otimes \mathbf{t}_4 - \mathbf{E}_2 \otimes \mathbf{t}_2 = 0, \tag{4.1}$$

$$\mathbf{p}_1 \otimes \mathbf{x}_1 - \mathbf{p}_2 \otimes \mathbf{x}_2 = 0, \tag{4.2}$$

$$\hat{\mathbf{s}}_1 * \mathcal{G}_1 - \hat{\mathbf{s}}_2 * \mathcal{G}_2 = 0. \tag{4.3}$$

Ebenfalls bei Erhaltung der physikalischen Größen

$$\mathbf{E}_2 = -\mathbf{E}_1,$$
 $\mathbf{p}_2 = -\mathbf{p}_1,$ $\hat{s}_2 = -\hat{s}_1$ (2.1, 2.2, 2.3)

folgt gegenüber dem 1. Fall umgekehrt

$$\mathbf{t}_2 = -\mathbf{t}_1, \qquad \mathbf{x}_2 = -\mathbf{x}_1, \qquad \mathcal{G}_2 = -\mathcal{G}_1, \qquad (8.1, 8.2, 8.3)$$

alle unbestimmt, positiv oder negativ. Beide Spins \mathbf{s}_1 und \mathbf{s}_2 sind ebenfalls antiparallel. In allen Fällen gilt bei den raumzeitlichen Größen \mathbf{t} , \mathbf{x} , \mathcal{G} einheitliches Vorzeichen eines bestimmten Photons (und somit einheitliches Vorzeichen der physikalischen Größen \mathbf{E} , \mathbf{p} , $\hat{\mathbf{s}}$). Hier ändert sich die Wirkung um ± 2 \hbar . $[\square]$

Es muss die Bemerkung wiederholt werden, dass die in den grundlegenden Gleichungen enthaltene Raum-Zeit (*,c*) beider Photonen bei der Urzeugung im Pandynato, nicht in einer Raum-Zeit entstehen. Sie sind Raum und Zeit der Photonen. Eigentlich muss es heißen: <u>Jede Eig (beim Photon die Elementar-Ladung) hat ihren eigenständigen Raum und ihre eigenständige Zeit, die Zeit ist eindimensional, der Raum (mindestens) dreidimensional.</u>

Der Raum und die Zeit, in welchen sich das Teilchen (Photon) befindet, werden erst durch die Bewegung, d.h. den Impuls, erzeugt, der Raum in nur einer Dimension, der Richtung des Impulses. Genauer gesagt einer Halbdimension bei Raum und Zeit des einen Teilchens, der anderen Halbdimension des anderen Teilchens (zur Halbdimension siehe weiter unten). Die weitere

Erzeugung von Photonenpaaren innerhalb eines Photons erzeugt eine weitere globale Raum-Dimension.

In der Raum-Zeit eines Teilchens, sozusagen "innerhalb" derer, gibt es keine Wechselwirkung der Eigenschaft oder Eigenschaften, folglich auch keine Geschwindigkeit der Wechselwirkung (siehe 2. Hauptsatz, S. 13). Das bedeutet im Rahmen der klassischen Physik, dass dieser Bereich im Beobachterraum wie ein Raum- bzw. Zeitpunkt behandelt werden kann, obwohl er auch dort eine Ausdehnung hat (s. folgenden Absatz). Anders ausgedrückt: Innerhalb der Raum-Zeit eines Teilchens ist die klassische Physik (die Newtonsche und die Einsteinsche) nicht anwendbar, andererseits kann durch klassische Geräte die Raum-Zeit eines Teilchens beeinflusst werden. Deshalb erscheint die Helizität, und damit auch der Spin, als "innere" Struktur des Teilchens, in der klassischen Physik als aufgesetzt und fremd – solange man es nicht als Wellenpaket behandelt.

Überschneiden sich die Räume zweier Photonen, spricht man von Verschränkung. [■]

Es sei an die in • 4.5 stehenden Beziehungen verwiesen, die speziell auch für Photonen gelten:

$$(E + \delta E)^*(\Delta t + \delta t) = \pm \hbar, \tag{9}$$

$$E = \pm \omega * \hbar = \pm v * \hbar, \tag{10.1}$$

$$\delta E = \delta \omega^* \hbar = \delta v^* h. \tag{10.2}$$

Ein Photon ist ein Quantenobjekt, festgelegt durch die fundamentale Naturgröße ħ, das sich mit der Grenz-Geschwindigkeit c ausbreitet und mit einer beliebigen, aber festen Frequenz mit gewisser Unschärfe in drei Raumdimensionen schwingt.

Aus der zweiten Relation für den Impuls und den Raum folgt im Einbettungsraum

$$(\mathbf{p} + \delta \mathbf{p})^* (\Delta \mathbf{x} + \delta \mathbf{x}) = \pm \hbar,$$

$$\mathbf{p} = \pm \mathbf{k}^* \hbar, \qquad \delta \mathbf{p} = \pm \delta \mathbf{k}^* \hbar.$$
(11)
$$(12.1, 12.2)$$

Die Bewegungsgröße des Photons ist mit einem Parameter, der Schwingungszahl festgelegt.

Ist das schwingende Photon eine Welle? Es ist nur dann eine Welle, wenn für Frequenz und Schwingungszahl die Relation

$$\omega/k = c (= v * \lambda) \tag{13}$$

erfüllt ist. Aus der Schwingungszahl wird die Kreisfrequenz und aus Schwingungslänge wird die Wellenzahl. Dann folgt aus (10.1) und (12.1) durch Elimination von ħ und mit (13) für ein Photon die Beziehung

$$E = |\mathbf{p}|^* \mathbf{c}, \qquad \delta E = |\delta \mathbf{p}|^* \mathbf{c}.$$
 (14.1, 14.2)

(siehe • 4.5, (S. 18)). Im Beobachterraum sind die Energie und die Größe des Impulses des Photons – da es eine Welle ist – auf einfachste Weise miteinander verbunden

Es taucht die Frage auf, ob es überhaupt möglich ist einem Teilchen ohne Ruhsystem, wie dem Photon, ein geometrisches Modell zuzuordnen. Man kann schließlich als Beobachter dem Photon nicht nebenherlaufen und es in Ruhe betrachten, aber man kann durchaus seine Ausdehnung mit den Unschärfen im Beobachterraum grob bestimmen. In Bewegungsrichtung ist es die (unscharfe)

Kohärenzlänge, senkrecht dazu ist es unbegrenzt, "nimmt aber, über einem bestimmten Abstand, schnell ab", wie aus dem Wirkungsquerschnitt bekannt ist. Auf Grund dieser "Abmessungen" kann man ein Modell konstruieren. Das Modell hat keine "scharfe" Oberfläche, lässt sich aber damit besser darstellen.

Obwohl die Ruhenergie des Photons verschwindet, enthält es doch eine virtuelle Eig/Ladung und die Anti-Eig/Anti-Ladung, die einen dreidimensionalen Raum, sozusagen als deren Gefäß, erfordern. Diese Dreidimensionalität hat letztlich die Dreidimensionalität des Beobachterraumes zur Folge, da der Beobachterraum aus einem Photonenraum seinen Ausgang nimmt (s.u.).

Als Grundelement für das Modell eines Photons dient ein Torus (siehe • 3.3 Teilchen und Geometrie).

Um aus der Darstellung eines Photons ein Anti-Photon darzustellen, muss man eine C-Transformation – eine Ladungskonjugation – ausführen. Dem entspricht aber auch eine Drehung von 180° bzw. π um die Hauptachse. Da ein Anfangs-Phasenwinkel nicht festzulegen ist, kann man prinzipiell nicht von Antiphotonen sprechen, sondern lediglich von einem Antiphoton zu einem bestimmten anderen Photon, besser von einer Phasenverschiebung der Torsion, die mit der des Drehwinkels um die Hauptachse übereinstimmt. In Analogie hierzu steht eine Phasenverschiebung beim Photon als elektromagnetischer Welle.

Die Unbestimmtheit des Phasen-Anfangswinkels steht im Einklang mit den grundlegenden Beziehungen (\bullet 4.3, (8)), die bezüglich der Achse des Impulses \mathbf{I}_p rotationssymmetrisch sind. Außerdem könnte daraus die Erhaltung der Eig/Ladung folgen.

In der Elektrodynamik ist das Photon eine elektromagnetische Welle, die Schwingung eines elektrischen und eines dazu senkrecht schwingenden magnetischen Feldes gleicher Größe, die beide senkrecht auf der Wellennormalen (der Ausbreitungsrichtung) stehen. Da die Welle in Richtung der Ausbreitung begrenzt ist, handelt es sich um ein Wellenpaket, ein physikalisches Objekt mit drei Raumdimensionen. Die Energiedichte (Energie pro Volumeneinheit) wird durch die Stärke der Felder bestimmt.

In der Quantenelektrodynamik ist das Verständnis umgekehrt. Elektrische und magnetische Felder und die elektromagnetischen Wellen werden durch virtuelle bzw. reelle Photonen dargestellt. Je nach der Eigenschaft des Drehimpulses (Bahndrehimpuls plus Spin) bei einer Spiegelung unterscheidet man elektrische und magnetische Photonen (Landafschitz, Bd. IV, § 6).

Als Quant betrachtet ist die Energie des Photons E = h*v (man kann so für ein klassisches Wellenpaket die Anzahl der Photonen bestimmen).

Was bestimmt nun die Energie des Quants? Die virtuelle Ladung bringt keinen Beitrag, anders ausgedrückt, die Energie der Ladung und die der Gegenladung heben sich gegeneinander auf. Da bleibt nur die Möglichkeit, der Schwingung der Ladung und Antiladung gegeneinander. Auf diese Weise könnte man die vier verschiedenen Arten – abgesehen von der Helizität – von Photonen darstellen (u.a. virtuelle elektrische und magnetische Photonen für die elektrischen und magnetischen Felder). Diese Schwingung der virtuellen

Ladungen (positive gegen negative) stellt eine Symmetrieverletzung dar und ermöglicht eine Wechselwirkung mit anderen virtuellen oder reellen Photonen, deren "Rotationssymmetrie" ebenfalls gebrochen ist. Die virtuellen Ladungen werden gewissermaßen infolge der Symmetrieverletzung "ein wenig" reell (Bild 3, S.64). Es ist gerade so, als ob im Photon ein elektrisches oder/und magnetisches Feld vorhanden wäre – analog dem Bild in der Elektrodynamik. Als anschauliche Hilfsgröße kann ein solches elektromagnetisches Feld dienen. Dies wirft ein anderes "Licht" auf die Elektromagnetische Welle der klassischen Elektrodynamik.

Vermöge seiner Energie kann dem Photon ebenfalls in einem Einbettungsraum zur Behandlung seiner Dynamik (Allgemeine Relativitätstheorie) eine (rein dynamische) Masse zugeschrieben werden. Diese Energie bzw. Masse bewirkt im Einbettungsraum eine "Bahnkrümmung" in einem Schwerefeld oder die Übertragung von Impuls bei "Reflexion" und daraus die Bestimmung der Ruhenergie/-masse des gestoßenen Teilchens. [■]

• 6.2 Die Entstehung eines globalen Raumes

In einem Photonen-Raum sind weitere Fluktuationen möglich, insbesondere kann ein weiteres reelles Photonenpaar entstehen. Dessen Impulsrichtung stimmt in der Regel nicht mit der des ersten Paares überein. Dann wird aus einer "inneren" Raumdimension des ersten Photons eine weitere Dimension im "Außenraum". Ein weiteres Photonenpaar kann aus der dritten "inneren" Dimension die dritte Dimension des "Außenraumes" aufspannen. Damit sind ein sich unaufhörlich sich ausdehnender dreidimensionaler Raum und eine Zeit-Dimension entstanden, und zwar sowohl in positiver als auch in negativer Richtungen. Dies ist eine Urzeugung einer vierdimensionalen Raum-Zeit, die Grundlage zur Entstehung eines Kosmos durch Evolution.

In den drei räumlichen Dimensionen des Photonenraumes kann sich die stoffliche Materie bilden mit ihrer Ruhenergie und letztlich die Lebewesen. Spezielle Lebewesen sind wir Menschen, von denen sich einige als Beobachter der materiellen Welt verstehen. Für sie ist der Photonenraum zum Beobachterraum geworden.

• 7 Die gemeinsame Grundlage der Wechselwirkungen

Wie bereits erwähnt, muss es möglich sein, dass letztlich aus einem oder mehreren Photonen alle anderen Wechselwirkungsteilchen, die Bosonen, entstehen, wobei durch "Aufspaltung" alle Teilchenpaare der Fermionen entstehen können.

• 7.1 Grundlagen

Die unspezifierte Ladung des Photons wird als Eig e bezeichnet; in einem Halbraum enthält es die Eig e^+ selbst, im anderen Halbraum die Anti-Eig e^- . Da die Eig e^+ und die Anti-Eig e^- im Photon keiner Wechselwirkung unterliegen (siehe • 2.3), erscheinen sie außerhalb des Photonenraumes virtuell. Die effektive Ladung wird durch geschweifte Klammern "{" und "}" gekennzeichnet. Für das Photon $\gamma(e^+,e^-)$ gilt

$$\{\gamma(e^+,e^-)\}=0$$
, sowie $\{e^++e^-\}=0$. (1)
Ladungen können nicht verschwinden oder sich (gegenseitig) aufheben, dies ist lediglich bei effektiven Ladungen möglich. Es ist niemals $e^++e^-=0$.

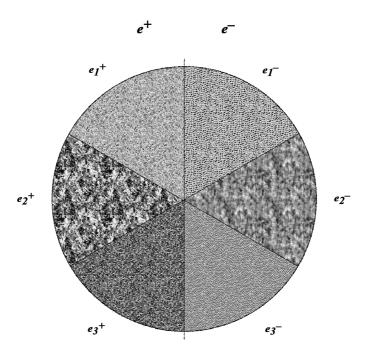


Fig. 1: Querschnitt des Photonentorus für 1- und 3-Symmetrie In der Abbildung ist der Torus eines Photons an einer Stelle (Torsionswinkel $\alpha=0$) im Querschnitt schematisch dargestellt. Zum einfacheren Verständnis hier ohne Unschärfe. Die Torsion ist $\mathcal{T}=1$ (hier nicht erkennbar), bei einer Schleife, $\mathcal{S}=1$.

Werden Eig und Anti-Eig je in drei gleiche Teile geteilt, kann man die 3-Symmetrie konstruieren. Schematisch ist dies in Fig. 1 dargestellt. Eine spezifizierte Eig wird mit c_i , i = 0, 1, 2, 3 bezeichnet, c steht für Charge. i=0 steht für die elektrische Ladung, wobei $c_0 = \frac{1}{3}$ e⁺ und $c_0^- = \frac{1}{3}$ e⁻ ist (geschweifte Klammern werden unter Umständen weggelassen).

Die Dreiersymmetrie der c_i , i = 1, 2, 3, verlangt das Verschwinden der effektiven Ladung aller drei Ladungen

$${c_1+c_2+c_3} = {c_1}+{c_2}+{c_2}=0,$$
 (2.1)

das Gleiche gilt für die Gegenladungen ci-

$$\{c_1^- + c_2^- + c_3^-\} = \{c_1^-\} + \{c_2^-\} + \{c_2^-\} = 0.$$
(2.2)

Wenn diese Summen nicht verschwinden würden, sondern eine vierte weitere Ladung ergäben, wäre es keine Dreiersymmetrie. Die Dreiersymmetrie ist eine abgeschlossene Symmetrie. Die nächsthöhere abgeschlossene ist die Siebener-Symmetrie. Es fällt eine Parallele zu den komplexen Zahlen auf; die elektrische Ladung, eine "Einersymmetrie", zur komplexen Einheit i, die Dreiersymmetrie zu den Quaternionen mit den drei komplexen Einheiten i, j, k, wobei i*j*k = -1 gilt und die Siebener-Symmetrie zu den Oktonionen mit sieben komplexen Einheiten (siehe auch • 3.3 Teilchen und Geometrie).

Formal kann man die effektiven Ladungen addieren und subtrahieren, wenn man $-\{c_i\} = \{c_i^-\}$ definiert. Speziell ist z.B.

$$\{c_i^-\} = \{c_j + c_k\}, i \neq j \neq k,$$
 (2.3)

d.h. zwei Farbladungen ergeben zusammen effektiv die Anti-Komplementär-Farbladung.

Innerhalb eines zusammengesetzten Teilchens, wie dem Neutron und dem Proton, verschwinden Ladung und Gegenladung keinesfalls – wie seit Mitte des 20. Jahrhunderts im Falle der elektrischen Ladung bekannt ist.

Die drei Ladungen c_i führen zur Starken Wechselwirkung und letztlich zu den Kernkräften. Auf Grund des Verschwindens der Summe aller drei effektiven Ladungen {c_i}, Gln. (2), hat man eine Analogie zur additiven Farbmischung dreier Grundfarben zu Weiß; Weiß hier als Null angesehen. Den {c_i} ordnet man die Grundfarben Rot (r), Grün (g) und Blau (b) zu und bezeichnet sie als die Farbladungen der Starken Wechselwirkung.

Sowohl Ladungen als auch Teilchen kann man vereinigen, jedoch nicht addieren oder subtrahieren; ein +-Zeichen steht dann für eine Zusammensetzung oder eine Vereinigung, ein - -Zeichen ergibt keinen Sinn; man kann Ladungen oder gar Teilchen nicht voneinander "abziehen"; Teilchen alleine können sich lediglich in andere Teilchen aufspalten bzw. zerfallen oder mehrere vereinigen sich.

7.2 Raum und spezifizierte Eig – die Ladungen

Was bestimmt die Art der Ladungen e und r, g, b aus der Eig? Dies wird allein durch Unterräume des 9-dimensionalen physikalischen Raumes definiert. Der elektrischen Ladung kommt die besondere Rolle zu, im Beobachterraum zu liegen. Die drei Farbladungen liegen in den sechs Dimensionen des Zusatzraumes und neben jeweils einer Dimension im Beobachterraum. Sind die Ladungen Bestandteil eines Teilchens, bildet es einen Torus und seine Haupt-

achse liegt im Beobachterraum. Die beiden restlichen Dimensionen einer Ladung bilden eine Fläche; die Fläche F_e , die im Beobachterraum liegt, mit den Dimensionen D_1 und D_2 . Die Farbladung r^{\pm} hat die Flächen F_r in den Dimensionen D_3 und D_4 , g^{\pm} die Fläche F_g und b^{\pm} die Fläche F_b mit den Dimensionen D_5 , D_6 bzw. D_7 und D_8 . Die verschiedenen Dimensionen stehen senkrecht aufeinander.

So werden aus den Eig e^+ und e^- im Beobachterraum (D₀, D₁, D₂) die elektrischen Ladungen e⁺ und e⁻, jede in einem Halbraum. Bei einem Photon grenzen beide Halbräume aneinander und bilden somit einen vollständigen Raum. Hat der Raum der Ladungen e⁺ + e⁻ die Torsion ±1 bei einer Schleife, bildet also einen vollständigen Raum, handelt es sich bei dem Teilchen um ein Photon γ mit der Helizität $\mathcal{G} = \pm 1$ (Spin $\pm \hbar$). Leider gibt es, historisch gewachsen, Mehrdeutigkeiten. Man muss zwischen dem Begriff Eig bzw. Ladung und einem Teilchen, welches die Ladungen trägt, unterscheiden. Das Elektron, mit dem Symbol e, wird zuweilen zur Unterscheidung von seinem Antiteilchen Positron, Symbol e^+ , auch als e^- symbolisiert, so dass e^- : e^- ist und $\{e^-\}=e^-$ gilt, neben e^+ : e^+ und $\{e^+\}=e^+$. Hinter dem Doppelpunk werden die Ladungen aufgeführt. Das sind scheinbare Trivialitäten, die aber bei Nichtbeachtung zu Missverständnissen führen können. Für die "schwereren" μ- und τ-Leptonen, Teilchen der 2. und 3. Familie, gilt ebenfalls μ^{\pm} : e^{\pm} und $\{\mu^{\pm}\}=e^{\pm}$, neben τ^{\pm} : e^{\pm} und $\{\tau^{\pm}\}=e^{\pm}$, jedoch mit anderen geometrischen Eigenschaften (siehe auch • 3.3 Teilchen und Geometrie). Bei einem Teilchen T mit Ladungen der 3-Symmetrie, c_i, gilt demzufolge

$$T(c_1,c_2,c_3): c_1+c_2+c_3 \neq 0, \text{ aber } \{T\} = \{c_1+c_2+c_3\} = 0.$$
 (3)

Das Teilchen $T(c_1,c_2,c_3)$ und ebenso sein Anti-Teilchen $T^-(c_1,c_2,c_3)$ besitzen jedes ein abgeschlossenes (Farb-)Ladungssystem; ein Teilchen mit allen Farb- und Anti-Farbladungen $\zeta(c_1,c_2,c_3;c_1,c_2,c_3)$ – das Coloron –besitzt ein vollständiges Farbsystem (das Photon γ und das Coloron ζ sind die einzigen einfachen Teilchen mit vollständiger Eig).

Ein sozusagen elektrisch abgeschlossenes Ladungssystem wird sowohl durch $3c_0^+$: e^- als auch durch $3c_0^-$: e^+ gebildet, ein vollständiges Ladungssystem durch $3c_0^++3c_0^-$ [leider wurde historisch die Ladung des Elektrons zu e^- festgelegt].

Die Darstellung eines Teilchens durch seine Ladungen und die Angaben zur Raumstruktur Torsion \mathcal{T} und Schleifenzahl \mathcal{Z} ist eineindeutig. $[\bullet]$

[Präzisierung des 1. HS, S. 12]

• 7.3 Bosonen

Zu einem Boson gehören entweder drei verschiedene $c_i^+ + c_i^-$, i = 1, 2, 3, oder davon ein, zwei oder drei durch $c_0^+ + c_0^-$ ersetzt. Die besondere Rolle spielt das Boson mit drei $c_0^+ + c_0^-$, das bereits eingeführte Photon γ . Neu in der Sammlung der Bosonen ist das Coloron ζ (Zeta), welches alle drei Farb- und Antifarbladungen c_i^\pm enthält und somit ein vollständiges Ladungssystem hat. Wie beim Photon ist deshalb seine Ruhenergie Null. Für diese beiden Bosonen ist eine Eichtransformation möglich, woraus die Erhaltung der elektrischen bzw. der Farb-Ladungen folgt. Das besondere und völlig Neue ist, dass sich ein energiereiches Photon, welches in einem höherdimensionalen Raum eingebet-

tet ist, sich in ein Coloron verwandelt und umgekehrt, sich ein Coloron, welches in einen dreidimensionalen Raum gelangt, ein Photon wird. Dies ist aus wohlverstandenen Experimenten begründet (siehe • 10 unten, Zerfall der Pionen). Bosonen haben die Helizität 1 und somit den Spin $\hat{s} = \pm \hbar$.

Das Coloron könnte mit dem Pomeron identisch sein (s.a. S. 33).

Die gemischtgeladenen Bosonen mit elektrischer c_0^\pm und Farbladung c_i^\pm bilden die beiden großen Gruppen der Gluonen. Diese Wechselwirkungsteilchen haben eine Ruhenergie, weshalb bei ihnen eine Eichtransformation nicht möglich, aber auch nicht nötig ist. Zur besseren Übersicht wird generell für die Bosonen B mit drei oberen Indices für die positiven Ladungen und drei untere Indices für die negativen Ladungen eingeführt; zusätzlich können die verschiedenen Ladungen als Argumente angezeigt werden.

Für das Photon γ hat man einfach $B^{000}_{000}(3c_0^+;3c_0^-)$, für das Coloron ζ analog $B^{123}_{123}(c_1^+,c_2^+,c_3^+;c_1^-,c_2^-,c_3^-)$.

• 7.3.1 Die (effektiv) ungeladenen Bosonen

Neben dem Photon und dem Coloron gibt es zwei weitere Typen effektiv ungeladener Bosonen. Sie enthalten gemischte Ladungen, elektrische und Farbladungen, wie bereis oben erwähnt. Ersetzt man rein formal beim Photon ein Paar c_0^\pm durch ein Paar Farbladungen c_i^\pm , erhält man das Delta-Boson δ_i in fünf Dimensionen mit der Darstellung $B^{00i}{}_{00i}(2c_0^+,c_i^+,2c_0^-,c_i^-)$. Ersetzt man zwei Paare c_0^\pm durch zwei Paare $c_i^\pm,\,c_j^\pm,\,$ erhält man das Epsilon-Boson $\epsilon_{(k)},\,i\neq j\neq k,\,$ in sieben Dimensionen mit der Darstellung $B^{0ij}{}_{0ij}(c_0^+,c_i^+,c_j^+,c_0^-,c_i^-,c_j^-)$. Wegen (2.3) erscheint bei $\epsilon_{(k)}$ der Index k.

Im Unterschied zur gängigen Theorie besitzen die Gluonen auch virtuelle elektrischen Ladungen. Schwerwiegender ist hier zudem ihre nicht verschwindende Ruhenergie, da sie keine abgeschlossenen Ladungssysteme haben. In der derzeitigen (String-)Theorie ging man offensichtlich davon aus, dass alle Bosonen wie das Photon prinzipiell keine Ruhenergie besitzen. In diesen Fällen kann man Vektorpotentiale einführen, die beispielsweise in der Elektrodynamik die mathematische Behandlung der Feldgleichungen vereinfachen und erlaubt eine Reihe von Eigenschaften abzuleiten. Bei den Gluonen kann man die offensichtlich falsche Annahme ihrer verschwindenden Ruhenergie daran erkennen, da bei $E \approx E_0$ die Rechnungen nicht bzw. schlecht konvergieren, sie aber dann gut funktionieren, wenn die Energie der Bosonen groß gegenüber ihrer nunmehr vernachlässigbaren Ruhenergie ist.

Einige Erscheinungen im Zusammenhang mit den Gluonen lassen sich im ("strintheoretischen") Falle mit gefordertem $E_0 = 0$ schwer erklären, nur unter zusätzlichen Annahmen und Ergänzungen im Rahmen der Chromodynamik.

Für $E_0 \neq 0$ folgen sie "automatisch". So ist u < c und deshalb kann ein Ruhsystem eingeführt werden. Zum Gluon gehört darin die Lebenszeit Δt , in welcher (5. HS) ein anderes Gluon absorbiert und ein weiteres emittiert werden muss, oder es zerfällt. Daher sind spontane Zerfälle nicht nur möglich, sondern zwangsläufig, was erhebliche Konsequenzen hat. In seiner Lebenszeit legt das Gluon einen maximalen Weg $\Delta x_{max} < c^* \Delta t$ zurück. Die Reichweite der Gluonen ist begrenzt! Daraus folgt das sogenannte Confinement, d.h. Teilchen

und Teilchenkonglomerate mit Farbladungen sind im Beobachterraum isolierte Objekte. Im Abschnitt • 11 Konglomerate aus drei Quarks, wird ausführlicher darauf eingegangen.

Gemäß der deutschen WIKIPEDIA: "Als Confinement (engl. für 'Gefangenschaft') bezeichnet man in der <u>Teilchenphysik</u> das Phänomen, dass Teilchen mit <u>Farbladung</u> nicht isoliert vorkommen. So kommen <u>Quarks</u> und <u>Gluonen</u> nur in <u>Bindungszuständen</u> vor und können prinzipiell *nicht* als <u>freie Teilchen</u> gemessen werden. Eine vollständige theoretische Beschreibung dieses experimentellen Befundes steht noch aus."

Die jeweils drei Teilchen $\delta_{(i)}$ und $\epsilon_{(i)}$ mit – intern – elektrischer und farblicher Ladungen (deshalb die Klammern) können aus dem nur elektrische Ladungen enthaltenden Photon γ und dem keine elektrischen aber alle drei Farbladungen enthaltenden Zeta-Boson ζ "gemischt" werden:

$$2\gamma + \zeta \Rightarrow \tag{4.1}$$

$$\delta_{(1)}(2c_0, 2c_0, c_1, c_1) + \delta_{(2)}(2c_0, 2c_0, c_2, c_2) + \delta_{(3)}(2c_0, 2c_0, c_3, c_3)$$

und

$$\begin{array}{l} \gamma + 2\zeta \Rightarrow & (4.2) \\ \epsilon_{(3)}(c_0, c_{-0}, c_1, c_2, c_{-1}, c_{-2}) + \epsilon_{(2)}(c_0, c_{-0}, c_1, c_3, c_{-1}, c_{-3}) + \epsilon_{(1)}(c_0, c_{-0}, c_2, c_3, c_{-2}, c_{-3}). \end{array}$$

Die Kombination der beiden gemischte Ladungen enthaltenden Bosonen δ_0 und ϵ_0 ist trivial

$$3(\gamma + \zeta) \Rightarrow \delta_{(1)} + \delta_{(2)} + \delta_{(3)} + \varepsilon_{(1)} + \varepsilon_{(2)} + \varepsilon_{(3)} : 3*(3c_0, 3c_0; c_1, c_2, c_3, c_1, c_2, c_3). \tag{4.3}$$

	Symbol	Elektr. Ladung	Farbladung	Mögliche Darstellung		Dimensionen
1.	γ	$3(c_0,c_0^-)$	0	(e ⁺ ,e ⁻)	1	$3, (D_0, F_e)$
2.	$\delta_{(i)}$	$2(c_0,c_0^-)$	C _i ,C ⁻ _i	(u _i ,u _i -)	3	$5, (D_0, F_e, F_i)$
3.	$\epsilon_{(k)}$	$1(c_0,c_0^-)$	c_i,c_j,c_i^-,c_j^-	(d_k,d_k^-)	3	$7, (D_0, F_e, F_i, F_j)$
4.	ζ	0	$c_i,c_j,c_k,c_i^-,c_j^-,c_k^-$	(v,v ⁻)	1	$7, (D_0, F_i, F_j, F_k)$

Tabelle 1: Die (effektiv) ungeladenen Bosonen bei einer 1- + 3-Symmetrie Mit i, j, k = 1, 2, 3; $i \neq j \neq k$. N ist die Anzahl der unterschiedlichen Teilchen. Insgesamt gibt es also acht verschiedene ungeladene Bosonen.

Die äquivalenten Relationen (4.1) bis (4.3) in der B-Darstellung, die Argumente sind weggelassen, sind

$$\begin{split} B^{000}{}_{000} + B^{000}{}_{000} + B^{123}{}_{123} &\Rightarrow B^{001}{}_{001} + B^{002}{}_{002} + B^{003}{}_{003}, \\ B^{000}{}_{000} + B^{123}{}_{123} + B^{123}{}_{123} &\Rightarrow B^{012}{}_{012} + B^{013}{}_{013} + B^{023}{}_{023}, \\ 3*B^{000}{}_{000} + 3*B^{123}{}_{123} &\Rightarrow B^{001}{}_{001} + B^{002}{}_{002} + B^{003}{}_{003} + B^{012}{}_{012} + B^{013}{}_{013} + B^{023}{}_{023}. \end{split}$$

$$(4.1')$$

Die geometrische Deutung der effektiv ungeladenen Bosonen ist wie beim Photon und dem Coloron ein Torus mit Torsion 1, wobei der Torus in die weiteren Ladungsflächen, in die zugehörigen 5 oder 7 Dimensionen, gedreht ist. Die Drehwinkel haben ganz bestimmte Werte, so dass jeweils ½ des

Volumens in einen Farbraum gelangt [dies muss noch mathematisch herausgearbeitet werden].

 $[{\color{red} \square}]$

Mit der Energie der Bosonen ist ihre Schwingung über E = h*v verbunden, die eine Brechung der Symmetrie bewirkt und somit die Wechselwirkung mit "geladenen" Teilchen ermöglicht. Diese Bosonen sind invariant gegenüber Ladungskonjugation. Die Ladungskonjugation kann durch eine Phasenverschiebung des Torsionswinkels und somit dem Drehwinkel um die Hauptachse von 180° bzw. π kompensiert werden (allgemeiner: um den Winkel $\pi/|T|$). Ist eine Phasenverschiebung irrelevant, sind Teilchen und Antiteilchen nicht unterscheidbar, gewissermaßen gleich). Die Analogie zur elektromagnetischen Welle ist auffällig.

Die Photonen, sowie alle Bosonen und Fermionen, sind keine statischen Objekte. Vielmehr schwingen die in ihnen enthaltenen Ladungen. Beim Photon gibt es vier unterschiedliche Formen, die ihre vier Arten ausmachen. Infolge unsymmetrischer Schwingungen hat das Photon eine symmetriebrechende Ladungsverteilung, die wiederum die Wechselwirkung mit anderen Teilchen mit elektrischer Ladung und magnetischen Dipolen ermöglicht. In der klassischen Elektrodynamik erscheint dies als elektrisches und magnetisches Feld der elektromagnetischen Welle. Somit sind z.B. für Funkwellen Antennen möglich.

Da sich Photonen und Coloronen als Teilchen ohne Ruhenergie mit der Grenzgeschwindigkeit c bewegen, können sie nicht in Impuls-Richtung schwingen. Es handelt sich um Transversalschwingungen in 2, 4 oder 6 Dimensionen.

Das Coloron könnte mit dem Pomeron identisch sein (s. z.B. Im Herzen der Materie, Der Elektron-Proton-Beschleuniger HERA und die "wee"-Partonen, Allen Caldwell und Günter Grindhammer, in: Physik Journal 6 (2007) Nr. 11). Ein anderer Hinweis könnten neuere Messungen einer ungarischen Gruppe sein, die auf ein Boson mit einer (Ruh)-Energie von 17 MeV hinweisen. [http://www.nature.com/news/has-a-hungarian-physics-lab-found-a-fifth-force-of-nature-1.19957].

• 7.3.2 Die geladenen Bosonen

Die effektiv ungeladenen Bosonen können keine Wechselwirkung zwischen Teilchen mit unterschiedlicher Farbladung bewirken. Sie wirken nur im gleichen Farbraum. Die wichtigen Wechselwirkungen sind jedoch die zwischen Teilchen verschiedener Farbladungen, die erst in • 8.3 eingeführt werden. Aus diesem Grund werden die geladenen Bosonen hier formal abgeleitet. So kann man sich vorstellen, dass die geladenen Bosonen aus den ungeladenen durch z.B. diese Reaktion gebildet werden:

$$B^{001}_{001} + B^{002}_{002} + B^{003}_{003} \Rightarrow B^{001}_{002} + B^{002}_{003} + B^{003}_{001}, \text{ oder}$$
(5.1)

$$B^{001}_{001} + B^{002}_{002} + B^{003}_{003} \Rightarrow B^{002}_{001} + B^{003}_{002} + B^{001}_{003}, \tag{5.2}$$

unten in (5.2) die inversen von (5.1). Oder mit einem Paar c_0^+ , c_0^- je Boson:

$$B^{012}_{012} + B^{013}_{013} + B^{023}_{023} \Rightarrow B^{012}_{023} + B^{013}_{012} + B^{023}_{013},$$

$$B^{012}_{012} + B^{013}_{013} + B^{023}_{023} \Rightarrow B^{023}_{012} + B^{012}_{013} + B^{013}_{023}.$$

$$(5.3)$$

	Symbol	Elektr. Ladung	Farbladung	Effektive Ladung	Mögliche Darstellung		Dim
5.	${\rm B^{000}}_{00i}$	$3c_{0},2c_{0}^{-}$	c _i	C ₀ ,C ⁻ _i	(e+,u-i)	3	5
6.	$\mathrm{B^{000}_{0ji}}$	$3c_0,c_0^-$	C-i,C-j	$\begin{array}{c} 2c_{0},c_{i}^{-},c_{j}^{-} \to \\ 2c_{0},c_{k} \end{array}$	(e^+,d_k)	3	7
7.	${ m B}^{000}{}_{123}$	3c ₀	c-1,c-2,c-3	$3c_0 = e^+$	(e ⁺ ,v ⁻)	1	9
8.	$\mathrm{B}^{00\mathrm{i}}_{00\mathrm{j}}$	$2c_{0}, 2c_{0}$	c _i ,c _j	c _i ,c _j	(u_i, u_j^-)	6	7
9.	$\mathrm{B^{00i}_{0jk}}$	$2c_0,c_0^-$	$c_{i},c_{j}^{-},c_{k}^{-}$	c ₀ ,2c _i	(u_i,d_i)	3	9
10.	$\mathrm{B^{00i}_{0ij}}$	$2c_0,c_0^-$	$c_{i},c_{i}^{-},c_{j}^{-}$	$\begin{array}{c} c_0, c_i, c_k \rightarrow \\ c_0, c_j^- \end{array}$	(u_i,d_k)	6	7
11.	${ m B^{00i}}_{123}$	$2c_0$	$c_{i}, c_{-1}, c_{-2}, c_{-3}$	$2c_0,c_i$	(u _i ,v ⁻)	3	9
12.	$\mathrm{B}^{0\mathrm{i}\mathrm{j}}{}_{0\mathrm{j}\mathrm{k}}$	c_0, c_0^-	$c_{i},c_{j},c_{j}^{-},c_{k}^{-}$	c _i ,c ⁻ _k	(d_i,d_k^-)	6	9
13.	B ^{0ij} 123	\mathbf{c}_0	$C_{i}, C_{j}, C^{-1}, C^{-2}, C^{-3}$	C0,C_k	(d^k,v^-)	3	9

Tabelle 2: Die geladenen Bosonen bei einer 1- + 3-Symmetrie

In Kurzform sind alle neun verschiedenen Ladungs-Kombinationen geladener Bosonen in der Tabelle 2 aufgeführt. Zudem gibt es deren Antiteilchen. Bei den geladenen Bosonen müssen sich die beiden Halbräume mit e^+ bzw. e^- in unterschiedlichen Dimensionen (d.h. Ladungsflächen) befinden. Deshalb können sie nicht als Toroide dargestellt werden! Formal sollen sie trotzdem als Bosonen betrachtet werden. So gilt für Boson und Anti-Boson (B^{ijk}_{lmn}) $\equiv B^{ijk}_{lmn}$ $\equiv B^{lmn}_{ijk}$. Infolge der effektiven Ladungen ist die Ruhenergie zweifelsfrei ungleich Null und wesentlich grösser als die der effektiv ungeladenen Bosonen $\delta_{(i)}$ und $\epsilon_{(i)}$. Daraus folgt die viel kleinere Eigenzeit der effektiv geladenen

Bosonen und ihre wesentlich häufigere Wechselwirkung mit anderen Bosonen. Klassisch ausgedrückt: Die Felder der effektiv geladenen Bosonen sind viel stärker als die der effektiv ungeladenen Bosonen. Dies hat eventuell Bedeutung bei der Entstehung der Asymmetrie der Welt (• 21).

Die meisten dieser Bosonen, nämlich alle mit Drittelladungen c₀, sind extrem kurzlebig – kürzer als eine Schwingungsdauer. Bestenfalls als längerlebig bleiben lediglich 7. B⁰⁰⁰₁₂₃, (N=1, plus Antiteilchen N=1), 8. B⁰⁰ⁱ_{00j}, (N=3, plus Antiteilchen), und 12. B^{0ij}_{0jk}, (N=3, plus Antiteilchen), die deshalb eine besondere Rolle spielen (siehe unten).

Sind Photonen und – sicherlich – Coloronen die "Urteilchen" bei der Entstehung des Kosmos, so folgt daraus dessen Ladungsneutralität.

Die Problematik der geladenen Bosonen, geometrisch nicht als Toroide dargestellt werden zu können, lässt auf aus anderen Teilchen zusammengesetzte Wechselwirkungsteilchen schließen. Dafür kommen nur Konglomerate aus zwei Spin-½-Fermionen in Betracht. Im Falle farbneutraler Konglomerate sind das Mesonen (siehe • 10.1 Farbneutrale Konglomerate aus zwei Quarks – die Mesonen), in zwei Zuständen, mit parallelem oder antiparallelem Spin. [■]

• 7.3.3 Zuordnung der Gluonen zu den Bosonen

Hier gibt es gegenüber der gebräuchlichen Darstellung nur formale Abweichungen, außerdem wird hier wegen einer übersichtlicheren Schreibweise für die Gluonen das Symbol G, und nicht wie üblich g verwendet, was die Vergleichbarkeit nicht weiter erschwert (man verwendet g in Anlehnung an γ). Es ist dann

$$G_{ii}$$
- $(u,u^{-}) \equiv \delta_{(i)}$, und G_{ii} - $(d,d^{-}) \equiv \epsilon_{(i)}$. (6.1)

Jedes dieser drei Gluonen ist sein Antiteilchen. In der Chromodynamik verwendet man eine "Mischung" dieser beiden Formen, was mathematisch äquivalent ist und eher den Interpretationen zu den Messvorgänge entspricht.

Für die farbgeladenen, aber elektrisch neutralen Gluonen gibt es nur die Bosonen Nr. 8 und Nr. 12. und somit

$$G_{ij}(u_i,u_j^-) \equiv B^{00i}{}_{00j}$$
 und G_{ij} - $(d_i,d_j^-) \equiv B^{0ik}{}_{0jk}$ (6.2) (siehe Tabelle 2, S. 34). Die Vertauschung der Indices dieser jeweils drei Gluonen ergeben die Antiteilchen.

Wegen einer Abhängigkeit der Farbladungen, siehe • 7.1, Gl. (2.1), gibt es nicht neun, sondern acht unabhängige Bosonen. [■]

• 8 Die "gespaltenen" ungeladenen Bosonen – die Fermionen

Die "Spaltung" eines Torus mit der Torsion 1 in zwei zweischleifige Tori ist formal in • 3.3 (S. 10) beschrieben. Es ergibt einen bedeutenden Unterschied, ob die Bosonen eine Ruhenergie gleich oder ungleich Null besitzen.

Die Bosonen werden derart "gespalten", dass die drei Eig e^+_i und e^-_i , i=1,2,3, sind; die beiden "Spaltprodukte" entstehen also jeweils aus *einem* Halbraum e^+ oder e^- , haben die Helizität ± 2 und werden nach *Enrico Fermi* (*1901 – 1954) Fermionen genannt.

• 8.1 Die "Aufspaltung" des Photons in ein Positron & ein Elektron

Ist die Ruhenergie gleich Null, wie bei den Photonen und den Coloronen, können sie nicht spontan aufspalten. Dabei wäre die Erhaltung der Impulse verletzt, denn der Impuls des Photons $p = E_{ph}/c$ ist stets größer als der Impuls von Elektron $p_{el} = E_{el} * u_{el}/c^2$ und Positron $p_{pos} = E_{pos} * u_{pos}/c^2$ zusammen, wobei natürlich $E_{el} + E_{pos} \le E_{ph}$ wäre. Das Photon muss seinen "überschüssigen" Impuls an ein anderes Teilchen, etwa einem Proton, Neutron oder einem Atomkern, damit zwangsläufig einen Teil seiner Energie, abgeben können (die aufwendigen Rechnungen hierzu ausführlich in der Quantenelektrodynamik, z.B. Landafschitz III und IV).

Gerät das Photon in ein starkes elektrisches Feld, können bei der Existenz einer weiteren, also vierten, Raumdimension, die positive und die negative virtuelle Ladung voneinander getrennt werden, wodurch ein Positron und ein Elektron "erzeugt" werden (siehe Bilder 3 & 4):

$$\gamma \equiv B^{000}_{000} \to e^{+} + e^{-}. \tag{1}$$

• 8.2 Die "Aufspaltung" des Colorons in ein Neutrino & ein Antineutrino

Analog wie beim Photon verhält es sich beim Coloron. Bei der Aufspaltung in ein Neutrino ν und in ein Antineutrino $\bar{\nu}$ werden die sechs Zusatzdimensionen des Physikalischen Raumes des Colorons und einer Dimension für die Achse (plus einer weiteren Dimension, diesmal des Beobachterraumes) benötigt. Es ist

$$\zeta \equiv B^{123}_{123} \rightarrow v + \overline{v}, \tag{2.1}$$

mit den Darstellungen

$$v: (c_1, c_2, c_3) \text{ und } \overline{v}: (c_1, c_2, c_3), \text{ wobei } \{v\} = 0, \{\overline{v}\} = 0$$
 (2.2)

gilt. Die Neutrinos v, \overline{v} haben abgeschlossene Farb-Ladungssysteme. Da sie keine effektive Ladung besitzen und "innerhalb" ihrer Raum-Zeit keine Wechselwirkung existiert, haben sie eine verschwindend geringe Ruhenergie. Man könnte sagen: Die Ruhenergie eines Neutrinos geht gegen Null, ist aber nicht Null. Sie ist nach bisherigen Messungen kleiner als 2 eV. Dies führt zu einer entsprechend kleinen Schwingungsfrequenz (im Ruhsystem), also einer extrem großen Schwingungsdauer und zu einem vergleichsweise "seltenen" Ladungsaustausch mit den Coloronen, klassisch gesprochen zu einem extrem schwachen Feld. Die "Eigenzeit" ist rund um den Faktor 0,25*10 6 -fach länger als die des Elektrons. Die "Feldstärke" ist somit im Vergleich zum Elektron $4*10^{-6}$ -fach schwächer. In sieben Raumdimensionen nimmt sie zudem $\sim r^{-6}$

schneller ab. Bei der typischen Energie, vergleichbar mit der von Elektronen, ist ihre Geschwindigkeit nahezu c.

Infolge der Schwingung der Neutrinos unterliegen sie einer Unsymmetrie ihrer Farbladungen – sie changieren, ebenso erscheint durch die Überlagerung zweier Farblagerungen auch die Anti-Gegenladungen. Ein Neutrino erscheint dabei als sein Antiteilchen!

Das Neutrino wird ebenfalls als Toroid dargestellt. Nur die Hauptachse liegt im Beobachterraum, alle sechs dazu senkrechten Nebenachsen in den Zusatzdimensionen, sind somit für uns nicht beobachtbar. Es kann ebenfalls mit der Diracgleichung (*), S. 21 Einschub, berechnet werden, allerdings in sieben Raumdimensionen und etwa 2,56*10⁶ facher Comptonlänge als l_{Ce}. [■]

• 8.2.1 Vergleich einiger Werte von Elektron und Neutrino

Nach $v_0 = E_0/h$ erhält man die Grundfrequenz eines Teilchens, mit $E_{0 E lektron} \approx 0,511$ MeV und $E_{0 Neutrino} \approx 2$ eV sind $v_{0 E lektron} \approx 0,124$ 10^{21} und $v_{0 Neutrino} \approx 0,5$ 10^{15} . Die Schwingungsdauer ist jeweils $t_{0 E lektron} \approx 8,1$ 10^{-21} s und $t_{0 Neutrino} \approx 2$ 10^{-15} s. Bei nahezu Lichtgeschwindigkeit legt das Neutrino dabei ein Strecke von 0,606 10^{-6} m zurück. Hätte das Neutrino die Ruhenergie von 2 10^{-6} eV, so wäre diese Strecke 0,606 m. Die Comptonlängen sind $l_C \approx 0,38615*10^{-12}$ m u. 10^{-6} m.

• 8.2.2 Neutrinooszillation

Die Mitteilung (per Email) von *Harald Fritzsch* (1943): "Neutrinooszillationen sind die Folge der Tatsache, dass die Masseneigenzustaende der Neutrinos nicht identisch sind mit den Eigenzustaenden der schwachen Wechselwirkung. …" findet in der hiesigen Theorie nicht den rechten Platz.

Vielmehr soll der 5. Hauptsatz (siehe • 4.4 Teilchen mit Ruhenergie und ihre Wechselwirkung) herangezogen werden: In der Zeit \mathbf{t} eines freien Teilchens mit Ruhenergie wird ein WW-Teilchen (Boson) absorbiert und eines emittiert. Das ist beim Neutrino das Coloron. Nun kann das Coloron ζ als Teilchen *ohne* Ruhenergie ebenso wie das Photon einfach vom Zustand I (erste Familie) in den Zustand II (zweite Familie) mit erweitertem Spin übergehen. Und es kann folgende WW ablaufen: $v_I + \zeta_{II} \leftrightarrow v_{II} + \zeta_{I}$ (2.3) (siehe auch • 13, S. 58). Die Frage nach der Häufigkeit dieser WW bleibt zu beantworten.

Neutrino und Antineutrino können eine schwache Bindung, das heißt eine extrem kurzzeitige, eingehen, ein Neutrinoium bilden.

Die geringe Wechselwirkung mit Quarks ist ohne Bosonen und allein auf Stöße zurückzuführen (• 12 WW ohne Bosonen). [■]

• 8.3 Die "Aufspaltung" der $\delta_{(i)}$ - und $\epsilon_{(k)}$ -Bosonen in u- bzw. d-Quarks

Neben den bereits eingeführten Elektronen/Positronen können aus e^+ die sog. u-Quarks entstehen, mit der Darstellung

$$u_i : (2c_0,c_i)$$
, mit $\{u_i\} : {}^2/_3\{e^+\} + \{c_i\}$
in fünf Dimensionen oder die \overline{d} -Ouarks

 \overline{d}_i : (c_0^+, c_j^+, c_k^+) , mit $\{d_i^-\} = \{c_0^+, c_j^+, c_k^+\} = \frac{1}{3}\{e^+\} + \{c_i^-\}$, $i \neq j \neq k$, (3.2) in sieben Dimensionen. Entsprechend können aus e^- die Quarks \overline{u} oder d

entstehen, z.B.

$$d_i: (c_0^-, c_i^-, c_k^-) \text{ mit } \{d_i\} = \{c_0^-, \overline{c}_i, \overline{c}_k\} = \frac{1}{3}\{e^-\} + \{c_i\}.$$
 (3.3)

Die Darstellung für die d-Quarks steht im Gegensatz zur derzeit üblichen der Quantenchromodynamik (die mit der dort üblichen Bezeichnung d_i : (c^-_0,c_i) wäre), gemäß der effektiven Farb-Ladung von d_i . Die Ladungen der Quarks liegen im selben Halbraum in einem Torus .

In der Tabelle 1 sind in der Spalte "Mögliche Darstellung", ebenso in • 7, Gln. (6), die "Aufspaltungen" angegeben. Es sind:

$$\delta_{\scriptscriptstyle (i)} \equiv G_{\scriptscriptstyle i}^{\scriptscriptstyle -}(u_{i}, \overline{u}_{i}) \equiv B^{00i}_{\scriptscriptstyle 00i} \longrightarrow u_{i} + \overline{u}_{i}, \tag{4.1}$$

$$\epsilon_{\scriptscriptstyle 0} \equiv G_{\scriptscriptstyle i}^{\scriptscriptstyle -}(d_{\scriptscriptstyle i}, \overline{d}_{\scriptscriptstyle i}) \equiv B^{\scriptscriptstyle 0jk}{}_{\scriptscriptstyle 0jk} \longrightarrow d_{\scriptscriptstyle i} + \overline{d}_{\scriptscriptstyle i}. \tag{4.2}$$

Die Vertauschung der Indices dieser jeweils drei Gluonen ergeben keine Änderung. Teilchen und Antiteilchen sind wie bei den Photonen und den Coloronen identisch.

Entsprechend der höheren Anzahl der Raumdimensionen ist die Ruhenergie der Quarks größer als die der Positronen/Elektronen:

Positron & Elektron ≈ 0.51 MeV, $u_i \approx 2.4$ MeV, $d_i \approx 4.8$ MeV.

Von der Anzahl der Dimensionen her gesehen müsste die Ruhenergie der Neutrinos vergleichbar mit der des d-Quarks sein. Der Unterschied ist, die Neutrinos sind wegen der Abgeschlossenheit ihrer Ladungen effektiv ungeladen, im Gegensatz zu den anderen Fermionen.

• 8.4 Das α-Quasi-Boson – Higgs oder Nicht-Higgs?

Besonderes Interesse erfährt die einfache Kombination:

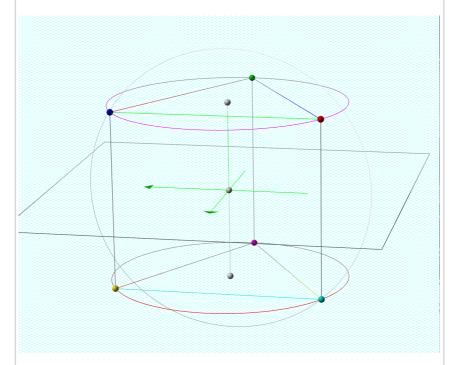
$$\gamma + \zeta$$
: $(3c_0, 3c_0; c_1, c_2, c_3, c_1, c_2, c_3)$, [ebenso $(\delta_0 + \epsilon_0)$] (4.3)

die sowohl die elektrische als auch die Farbladung vollständig beinhaltet. Sie erfüllt den gesamten physikalischen Raum und könnte bei paralleler Helizität (also antiparallelem Spin) als kurzlebiges Quasiteilchen existieren. Sie könnte bei einer "Urzeugung" zweier Photonen und nachfolgender Umwandlung eines Photons in ein Coloron entstehen. Die Ruhenergie beider (getrennten) Teilchen sind 0. Besitzt die kurze Bindung – etwa 10⁻²² s –zu einem Quasiteilchen eine Ruhenergie? Der Zerfall des Quasiteilchens ist mannigfaltig, wobei sich ein eventuell entstandenes Coloron im Beobachterraum wiederum zu einem Photon wandelt. Oder gibt es Beobachtungen eines "fehlenden" Photons, da das praktisch extrem schwer beobachtbare Coloron "entwischt" ist? Dieses Konglomerat wird hier α-Quasi-Boson genannt⁶. Es hat den Spin 0. Es gibt bei den Zerfällen eine verblüffende Ähnlichkeit zu dem im Jahre 2014 entdeckten sogenannten Higgs-Boson. Als zusammengesetztem Quasi-Teilchen gelten die Gln. (8) aus • 4.3 nicht! Das α-Quasi-Boson kann auch aus Bosonen γ, ζ mit erweitertem Spin bestehen, also neben α_I auch α_{II} und α_{III} als Quasibosonen der II. und III. Generation.

 $[{\color{red} \bigcirc}]$

• 8.5 Konglomerate aus Photonen

In analoger Weise wie sich ein Photon und ein Coloron verbinden können, ist dies vermutlich auch bei zwei Photonen möglich. Dabei gibt es die beiden

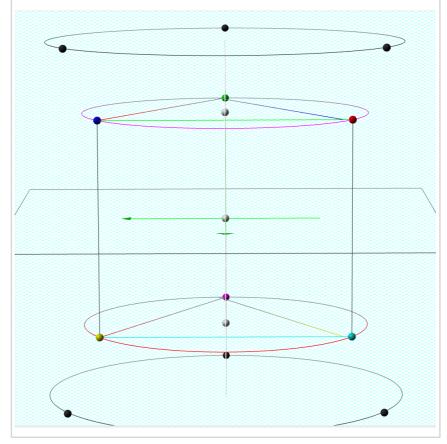

^{6.} Siehe externe Hinweise zur Literatur, unter <Links>

Möglichkeiten gleicher oder gegensätzlicher Helizität, folglich deren Spin 0 oder ± 2 , beide mit endlicher Ruhenergie! Beide, aber besonders der Fall gegensätzlicher Helizität und Spin ± 2 könnte zu bisher ungeahnten Eigenschaften stofflicher Materie führen, beispielsweise zu einer hohen Konzentra-
tion von Energie (Energiespeicher).

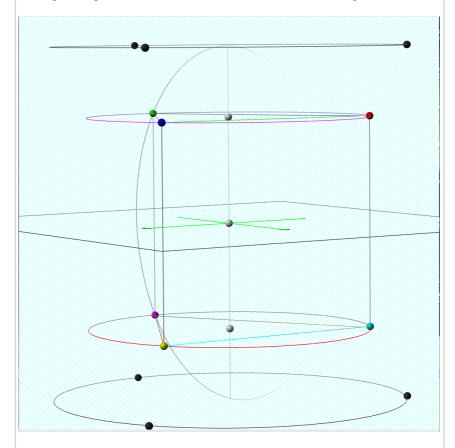
• 8.6 Grafische Darstellung der Ladungen c_0 und c_i und ihre Wechselwirkungen

Es gibt nach diesem Ansatz zur Beschreibung aller einfachen Elementarteilchen zwei verschiedenartige, grundlegende Ladungen mit ihren jeweiligen Antiladungen, die elektrische Ladung e^{\pm} , die in der Subladung c_0^{\pm} / e^{\pm} auftreten kann, und die drei so genanten Farbladungen c_i , i=1,2,3, allgemein als rgb (rot, grün, blau) bezeichnet.

Die drei c_i und ebenso ihre Antiladungen c_i^- kann man jeweils in den Ecken eines gleichseitigen Dreieckes anordnen, deren Seitenlänge s sei. Die beiden Ebenen der Dreiecke kann man in gleichen Abständen s/2 parallel zur Ebene z = 0 übereinander legen, so dass Ladung und Antiladung übereinander liegen, deren Abstände ebenfalls die Länge s haben. Jede Ladung hat somit zu den drei benachbarten Ladungen den Abstand s. So bilden sie die sechs Eckpunkte eines dreiseitigen Prismas. (In der Stringtheorie gibt es drei verschiedenartige solcher Ladungen – noch die "schwache Ladung".)



Die beiden grauen Punkte in den Dreiecken stellen deren Mittelpunkte dar, der graue Punkt auf der Verbindungslinie der Mittelpunkte der Dreiecke liegt in der Ebene z=0, er ist der Mittelpunkt des dreikantigen Prismas. Der Radius der Kreise um die beiden Dreiecke ist jeweils r, der Radius der Kugel um das Prisma mit den sechs Eckpunkten ist hingegen R. Es gelten $s=\sqrt{3*r}$ und $R=\sqrt{(3/2)*r}=\sqrt{2s/2}$.


Die Anziehungskräfte zu den benachbarten Ladungen korrespondieren zum Quadrat der inversen Abstände. Die Abstände zu den beiden benachbarten Ladungen in der gleichen Ebene parallel zu z=0 sind jeweils s, die Resultierende liegt parallel zur Höhe h des Dreiecks, mit der Länge $h = \sqrt{3*s/2} = (3/2)*r$. Die Anziehungskraft F der Ladung ist gegenüber den beiden Ladungen proportional zu $2/h^2 = 8/(3s^2)$. Sie ist also um den Faktor 8/3 größer als die Kraft zur Antiladung (gegenüber zur z=0-Ebene), proportional zu $1/s^2$.

Diese Betrachtung dient lediglich zur Veranschaulichung der Verhältnisse der Kräfte einmal von c_i zu c_j + c_k , die wesentlich größer ist als die Kraft von c_i zu c_i -. Dieser Umstand ist grundlegend bei der Entstehung des Kosmos.

Nun sollen die elektrischen Ladungen ergänzend eingefügt werden. Dafür werden jeweils eine Ebene bei z=R für die positive und z=-R für die negative elektrische Landung hinzugefügt. In Anbetracht der Tatsache, dass es gemischt-geladene Fermionen, die Quarks gibt, die ½ oder ¾ der elektrischen Elementarladung besitzen, wird $c_0=\frac{1}{2}e^+$ und die Antiladung $c_0^-=\frac{1}{2}e^-$. Sie werden ebenfalls an den Ecken zweier gleichseitiger Dreiecke markiert. Die beiden Umkreise haben die Radien R.

Die allgemeine Regel für die Leptonen lautet: Jedes Lepton wird aus **drei** Ladungs-Komponenten eines Halbraumes z > 0 **oder** z < 0 dargestellt.

Auf der gedreht und leicht gekippt abgebildeten Struktur ist die umschließende Kugel der Elementarzelle des dreiseitigen Prismas der Farbladungen angedeutet.

Allerdings sind die Farbladungen in einem anderen Raum als die elektrischen Ladungen. Ein wesentlicher Grund, weshalb sie nicht direkt miteinander wechselwirken, eventuell mit der seltenen Ausnahme, dass die konkreten Richtungen der Hauptachsen der sie tragenden Teilchen zusammen fallen.

[Die drei Grafiken wurden unter Verwendung von Graphing Calculator erstellt. Es sind Bildschirmfotos der frei drehbaren 3-D-Darstellungen, aus Dokumenten im gcf –Format].

• 9 Wechselwirkung der Fermionen mit Bosonen

Wie im 5. Hauptsatz postuliert, unterliegen die Fermionen einer stetigen Wechselwirkung mit ihren Bosonen. Die Fermionen der Quarks mit der elektrischen Ladung und den Farbladungen besitzen gegenüber den Fermionen der "einen" elektrischen Ladung und der der "einen" abgeschlossenen Farbladungen eine komplexere Struktur. Deshalb werden die Wechselwirkungen der Quarks getrennt von den anderen betrachtet.

Auf Grund der räumlichen Unschärfen der Quanten/Toroide reichen sie in andere Dimensionen/Ladungsflächen hinein, mit der Folge einer minimalen Wechselwirkung mit "anderen" Ladungen". Bekannt ist sie z.B. bei Elektronen mit Neutrinos.

• 9.1 Wechselwirkung der Quarks mit Gluonen

Wie bereits im Abschnitt • 4.4 beschrieben, ist die endliche Zeit Δt eines Teilchens mit Ruhenergie die tiefere Ursache der Wechselwirkung mit den Bosonen, der eigentliche Grund der Existenz der Felder geladener Teilchen. Pro Zeitintervall $\Delta t \approx \hbar/E$ wird ein Feldquant emittiert und eines absorbiert. Bei einem Wechsel der Farbladung ist – hier ungeachtet der Richtung der Spins des Quarks und des Gluons – bei einem u-Quark

$$u_i + G_{ji} - (u_j, u_i^-) : c_i + c_i^- + c_j + 2c_0 + (2c_0 + 2c_0^-) \leftrightarrow u_j + G_{ii} - (u_i, u_i^-)$$
 und bei einem d-Quark, (1.1)

$$d_{i} + G_{ji}^{-}(d_{j},d_{i}^{-}) : (c_{j}^{-}+c_{k}^{-})+(c_{i}^{-}+c_{k}^{-}+c_{j}^{-}+c_{k}) + c_{0}^{-}+(c_{0}+c_{0}^{-}) \leftrightarrow d_{j}^{-}+G_{ii}^{-}(d_{i},d_{i}^{-}),$$

$$(1,2)$$

wobei beide Richtungen der Reaktionen möglich sind, wie der Doppelpfeil " \leftarrow " markiert. Hier kann i = j sein, gewissermaßen die elementare Wechselwirkung ohne Farbladungswechsel. Eingeschlossen ist die Wechselwirkung der elektrischen Ladung (hier mit c_0^{\pm} markiert).

Einzelne Gluonen können die Wechselwirkung zwischen u- und d-Quarks alleine nicht bringen, es gibt jedoch die Reaktionen.:

$$d_i + G_{ii}^-(u,u^-) \Rightarrow e^- + (c_{-1},c_{-2},c_{-3}) + 2c_0 + c_i \Rightarrow e^- + v^- + u_i, \tag{2.1}$$

$$d_i^- + G_{ii}^-(u, u^-) \Rightarrow e^+ + (c_1, c_2, c_3) + 2c_0^- + c_i^- \Rightarrow e^+ + v + u_i^-, \tag{2.2}$$

$$u_i + G_{ii}(d, d) \Rightarrow e^+ + (c_1, c_2, c_3) + c_0 + (c_i, c_k) \Rightarrow e^+ + v + d_i,$$
 (2.3)

$$u_i^- + G_{ii}^- (d, d^-) \Rightarrow e^- + (c_1^-, c_2^-, c_3^-) + c_0^+ + (c_i, c_k) \Rightarrow e^- + v^- + d_i^-.$$
 (2.4)

Auch die gemischtfarbigen Gluonen haben solche Reaktionen, z.B.:

$$d_i + G_{ii}^-(u, u^-) \Rightarrow e^- + (c_{-1}^-, c_{-2}^-, c_{-3}^-) + 2c_0^+ + c_i \Rightarrow e^- + v^- + u_i, \tag{3.1}$$

$$d_{i}^{-} + G_{ii}^{-}(u, u^{-}) \Rightarrow e^{+} + (c_{1}, c_{2}, c_{3}) + 2c_{0}^{-} + c_{j}^{-} \Rightarrow e^{+} + v + u_{j}^{-},$$
(3.2)

$$u_i + G_{ii}(d,d) \Rightarrow e^+ + (c_1,c_2,c_3) + c_0^- + (c_i,c_k) \Rightarrow e^+ + v + d_i,$$
 (3.3)

$$u_i^- + G_{ji}^-(d,d^-) \Rightarrow e^- + (c_1^-,c_2^-,c_3^-) + c_0 + (c_i,c_k) \Rightarrow e^- + v^- + d_j^-.$$
 (3.4)

Die gemischtfarbigen Bosonen/Gluonen sind jedoch Pseudobosonen (* 7.3.2). Einzelne Gluonen können d- in u-Quarks und umgekehrt verwandeln, jedoch nur unter zusätzlicher Bildung eines Positrons/Elektrons und eines Neutrinos/Antineutrinos.

Es gibt jedoch die Doppel-Reaktionen

$$u_{i} + d_{j} + G_{ji}^{-}(u_{j}, u_{i}^{-}) + G_{ij}^{-}(d_{i}, d_{j}^{-}) \Leftrightarrow u_{j} + d_{i} + G_{ii}^{-}(u_{i}, u_{i}^{-}) + G_{jj}^{-}(d_{j}, d_{j}^{-}), \tag{4.1}$$

$$u_{i} + d_{i}^{-} + G_{ii}^{-}(u_{i}, u_{i}^{-}) + G_{ii}^{-}(d_{i}, d_{i}^{-}) \Leftrightarrow u_{i} + d_{i}^{-} + G_{ii}^{-}(u_{i}, u_{i}^{-}) + G_{ii}^{-}(d_{i}, d_{i}^{-}), \tag{4.2}$$

sowie deren ladungskonjugierte Relationen. Diese Reaktionen sind in Quark-

konglomeraten bedeutsam; sie beschreiben die Wechselwirkung zwischen uund d-Quarks − sie vertauschen ihre Farbladungen. Die Spins der Quarks ändern sich hierbei nicht. [■]

• 9.2 Wechselwirkung der Leptonen e[±] und v[±] mit Bosonen

Als typische Leptonen werden hier lediglich die Elektronen und die zugehörigen Neutrinos v_e angeführt. Die elementaren Wechselwirkungen sind, siehe oben, $e^\pm + \gamma \to e^\pm + \gamma$ und $v^\pm + \zeta \to v^\pm + \zeta$. Ebenso wird die Compton-Streuung dargestellt, bei welcher durch einen "Stoß" (klassisch betrachtet) Energie und Impuls vom Photon auf das Elektron/Positron – oder umgekehrt beim inversen Comptoneffekt – übertragen wird. Es können aber auch Photonen emittiert werden (sog. Bremsstrahlung), wobei die kinetische Energie des Teilchens abnimmt, oder absorbiert werden, wenn sie zunimmt. Entsprechend können sich bei gebundenen Elektronen die Bindungsenergien ändern. Diese Energien werden durch die Energie von Photonen $[\gamma]$, $[2\gamma]$ usw. ausgedrückt

$$e^{\pm} + [\gamma] \rightarrow e^{\pm} + \gamma$$
 oder $e^{\pm} + \gamma \rightarrow e^{\pm} + [\gamma]$. (5.1, 5.2)

Analoges gilt bei den Neutrinos

$$v^{\pm} + [\zeta] \rightarrow v^{\pm} + \zeta \text{ oder } v^{\pm} + \zeta \rightarrow v^{\pm} + [\zeta], \tag{6.1, 6.2}$$

wobei die Coloronen erst durch die Umwandlung von Photonen entstanden sein können. Bei den Quarks u_i und d_i sind die zugehörigen Wechselwirkungsteilchen natürlich die Gluonen $G_{ii}^-(u,u^-)$ bzw. $G_{ii}^-(d,d^-)$. Letztlich kann sich die kinetische Energie und der Impuls bei Stößen mit anderen Teilchen ändern.

Die elektrisch geladenen Bosonen Π[±] [s.u.] vermitteln eine Wechselwirkung – und Umwandlung – zwischen beiden Leptonen

$$e^{\pm} + \Pi^{\mp} \Leftrightarrow v^{\pm} + \gamma, \qquad v^{\pm} + \Pi^{\pm} \Leftrightarrow e^{\pm} + \zeta \rightarrow e^{\pm} + \gamma.$$
 (7.1, 7.2)

Die "Paarvernichtung" von Elektron und Positron im gebundenen Zustand, ist im Falle paralleler Spins (einem Ortho-Positronium, mit $t_m \approx 1,386*10^{-7}s$ aus dem Grundzustand) im hiesigen Modell einfach

$$e^+ + e^- + [2\gamma] \Rightarrow 3\gamma$$
,

wobei die beiden zusätzlichen Photonen wegen Impuls-, Drehimpuls- und Ladungserhaltung notwendig sind. Die umgekehrte Reaktion ist auch mit einem Photon möglich, wenn ein anderes Teilchen, etwa ein Proton oder ein Neutron, zur Impuls- und Energieerhaltung durch einen Stoß mit wechselwirkt $\gamma + (p/n) \Rightarrow e^+ + e^- + (p/n)$. (8.1)

Im Falle antiparalleler Spins (einem Para-Positronium, mit $t_m \approx 1,244*10^{-10}s$ aus dem Grundzustand) ist

$$e^{\scriptscriptstyle +} + e^{\scriptscriptstyle -} + [\gamma] \Rightarrow 2\gamma, \qquad \quad \text{plus h\"o} \\ \text{h\'o} \\ \text{h\'o} \\ \text{en mit } 4\gamma \text{ u.a.} \qquad (8.2)$$

Beim Positronium wird außerdem Bahndrehimpuls in Spin umgewandelt.

Nach hiesigem Modell wäre noch mit den Π^{\pm} -Bosonen $\equiv B^{000}_{123}^{\pm}$ (Tabelle 2, Nr. 7, S. 34), mit beispielhafter Wahl der Spins,

$$e^{+}\uparrow + \Pi^{-}\uparrow + e^{-}\downarrow + \Pi^{+}\downarrow \Leftrightarrow v^{+}\uparrow + v^{-}\downarrow + \gamma\uparrow + \gamma\downarrow$$
 (9) möglich (siehe • 11, S. 49).

Es können sich auch ungebundene Elektronen und Positronen bei einem "Stoß" (siehe • 12) in ein Photon bzw. Photonen umwandeln. Prinzipiell gilt jedoch: Beide Teilchen e⁺ und e⁻ müssen gleiche Torsion bzw. Helizität haben.

• 9.3 Wechselwirkung von Neutrinos allgemein mit Leptonen

Auf Grund der räumlichen Struktur der Neutrinos unterscheidet sich ihre Wechselwirkung mit den Leptonen, die aus den Photonen hervorgehen, wie den Elektronen, massiv. Elektronen existieren nicht in den Zusatzdimensionen, so ist die Wechselwirkung mit den Neutrinos mit nur einer Dimension im Beobachterraum sehr gering. Andererseits ist die Wechselwirkung der Neutrinos untereinander extrem hoch, da sie sich in allen ihren Zusatzdimensionen überschneiden oder sich ergänzen (Annihilation). Die Comptonlänge der Neutrinos ist rund 2,6*10⁶ mal so groß wie die der Elektronen! Sobald ein Neutrino im "See" der Antineutrinos im Kosmos entsteht, wird es nahezu instantan annihiliert− bei dem sonst nicht auftretendem Wirkungsquerschnitt von etwa 10-⁶ m. Die Quarks nehmen eine Zwischenstellung ein. [■]

• 9.4 Wechselwirkung von Gluonen mit Gluonen, Neutronenstern

Die Bildung von Gluonen-Konglomeraten scheint nicht unmöglich zu sein, etwa in den beiden Formen (10) und (11):

$$G(u_i, u_k^-) + G(u_j, u_i^-) + G(u_k, u_j^-) \Leftrightarrow (u_1, u_2, u_3) + (u_1, u_2, u_3)^-,$$
(10.1)

$$G(u_i, u_j^-) + G(u_j, u_k^-) + G(u_k, u_i^-) \Leftrightarrow (u_1, u_2, u_3) + (u_1, u_2, u_3)^-,$$
(10.2)

$$G(d_i, d_k^-) + G(d_j, d_i^-) + G(d_k, d_j^-) \Leftrightarrow (d_1, d_2, d_3) + (d_1, d_2, d_3)^-,$$
(11.1)

$$G(d_i, d_j^-) + G(d_j, d_k^-) + G(d_k, d_i^-) \Leftrightarrow (d_1, d_2, d_3) + (d_1, d_2, d_3)^-.$$
(11.2)

Diese Konglomerate sind jedoch nicht stabil, sie zerfallen in die angegebenen u $^{\pm}$ - bzw. d $^{\pm}$ -Quark-Konglomerate, die ebenfalls nicht stabil sind und wiederum die linksseitigen Gluon-Konglomerate oder Konglomerate der symmetrischen Formen $G(u_i,u_i^-)+G(u_i,u_j^-)+G(u_k,u_k^-)$ und $G(d_i,d_i^-)+G(d_j,d_j^-)+G(d_k,d_k^-)$ bilden. Je nach anderen physikalischen, speziell thermodynamischen, Parametern wird sich ein Gleichgewicht einstellen. Es kann folglich nur ein Gluon-Quark-Konglomerat geben.

In der Endphase der Entwicklung eines Sternes explodiert sein äußerer Bereich, der innere implodiert und wird dabei komprimiert. Je nach Ausgangszustand ist die Kompression so stark, dass ein sog. Neutronenstern entsteht oder ein noch dichterer Stern als "unsichtbares" Schwarzes Loch. Im Schwarzen Loch liegt die Materie wie im Anfangszustand eines Kosmos (siehe letzten Abschnitt • 20) in Form von Subteilchen vor. Der Neutronenstern ist in seinem Aufbau vielschichtig (siehe Wikipedia), eine Schicht besteht tatsächlich aus Neutronen n (siehe • 11) plus p und e⁻. Im Zentrum ist der Druck so groß, dass nur noch Gluon-Quark-Konglomerate vorhanden sind. Nimmt die Materiedichte weiter zu, so dass Subteilchen (• 14, S. 68) entstehen, "zerstrahlen" diese in Form eines Coloron- bzw. Gammablitzes .[■]

• 10 Farbneutrale Konglomerate aus zwei Quarks – die Mesonen

Eine besondere Rolle spielen die Mesonen. Sie sind "farbneutral", können eine effektive elektrische Ladung besitzen und haben den Gesamtspin 0 oder 1, je nach Orientierung der Spins der Konstituenten (siehe unten, Tabelle 3, S. 47). Sie sind keine Bosonen, wurden früher aber als solche angesehen, da sie die sogenannte Kernkraft vermitteln.

Als zusammengesetzte Teilchen haben sie eine Besonderheit, da sie aus einem Teilchen und einem Antiteilchen bestehen, denn bei dem Antiteilchen sind Helizität (Symbol ↑ oder ↓) und Spin (Symbol ↑ oder ↓) entgegengesetzt.

Zur abgeschlossenen Farbneutralität (c_1,c_2,c_3) oder (c_1^-,c_2^-,c_3^-) bildet sich eine Mischung der beiden Arten $\pi^0(u_i \Uparrow \uparrow, u_i^- \Uparrow \downarrow)$ und $\pi^0(d_i \Downarrow \downarrow, d_i^- \Downarrow \uparrow)$, die sogar zu einer vollständigen Farbladung führt und somit wesentlich schneller als π^\pm zerfällt; π^\pm u.a in Neutrinos und π^0 sogar zu Photonen/Coloronen \Rightarrow Photonen. Alle Mesonen benötigen somit neun Raumdimensionen. Auf Grund der abgeschlossenen – nicht notwendig vollständigen – Farbladung können sie den Raum eines Protons/Neutrons verlassen und so zur Wechselwirkung zwischen diesen beitragen – als sogenannte Kernkräfte. Da die Eigenzeiten endlich sind, sind ihre "Reichweiten" begrenzt.

In einem Meson existieren natürlich Wechselwirkungen der Quarks. Was für ein Teilchen kann z.B. aus einem π^0_{uu} -Meson in Wechselwirkung mit einem G_{dd} -Gluon entstehen? Es könnte

$$\pi^{0}_{uu} - (u_{i} \uparrow, u_{i} \downarrow) + G_{ii} - (d_{i}, d_{i}) \Leftrightarrow \pi^{0}_{dd} - (d_{i} \uparrow, d_{i} \downarrow) + G_{ii} - (u_{i}, u_{i})$$

$$\tag{1}$$

sein. Die u- und die d-Formen von π^0 können sich bei Wechselwirkung mit Gluonen ineinander umwandeln. Dies rechtfertigt, π^0 im Mittel als Überlagerung oder Mischung beider Formen anzusehen.

Die geladenen Pionen können paarweise aus Gluonen entstehen, beispielsweise

$$G_{ij}^-(u_i, u_j^-) + G_{ji}^-(d_i, d_j^-) \Leftrightarrow \pi^+(u_i, d_i^-) + \pi^-(d_j, u_j^-)$$
 (2)

und die geladenen Pionen die Mischform

$$\pi^{+}(u_{i}, d_{i}^{-}) + \pi^{-}(d_{j}, u_{j}^{-}) \to 2\pi^{0}$$
(3)

bilden.

Pionen können einzeln unter Beteiligung eines Quarks entstehen:

$$G_{ii}^{-}(u_i, u_{i-}) + d_i \Leftrightarrow \pi^{-}(d_i, u_{i-}) + u_i,$$
 (4.1)

$$G_{ii}^{-}(d_{i},d_{i}^{-}) + u_{i} \Leftrightarrow \pi^{+}(u_{i},d_{i}^{-}) + d_{i}.$$
 (4.2)

Durch Ladungskonjugation erhält man zwei weitere Beziehungen. Neben der Umwandlung der Quarks wird auch deren Spin und Helizität umgekehrt. Diese Reaktionen sind in den Atomkernen grundlegend, sie stellen ebenfalls weiterreichende Kernkräfte dar.

Es ist noch zu bemerken, dass die Pionen die gleiche Ladungsstruktur wie die schweren (Pseudo-)Bosonen W[±], Z⁰ haben, z.B. B^{000,123} und B_{000,123}, für W⁺ bzw. W⁻. Der Unterschied äußert sich u.a. in ihrem Spin und den großen Unterschieden in mittlerer Lebensdauer und den Ruhmassen.

Zu diesen Teilchen siehe • 11, S. 47. [

Teilchen	Ladungen	$\frac{m_0}{[MeV/c^2]}$	t _m [s]	Zerfall in	Spin
$\pi^+(u,d^-)$	$3c_0;c_1,c_2,c_3$	139,57	2,6*10-8	$\mu^{\scriptscriptstyle +}\!+\nu_{\scriptscriptstyle \mu}$	0
π ⁻ (u ⁻ ,d)	$3c_0^-; c_1^-, c_2^-, c_3^-$	139,57	2,6*10-8	$\mu^-\!+\nu_\mu^-$	0
$\pi^{\scriptscriptstyle 0}{}_{\scriptscriptstyle uar u}(u_i{\uparrow},u_i^-{\downarrow})$	$2c_0\uparrow,2c_0^-\downarrow;c_i\uparrow,c_i^-\downarrow$?	0
$\pi^0{}_{dar{d}}(d_i{\downarrow},d_i^-{\uparrow})$	$c_0 \uparrow, c_0^- \downarrow; c_j \uparrow, c_j^- \downarrow, c_k \uparrow, c_k^- \downarrow$?	0
$\pi^0 = $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	134,97	8,4*10-17	$ \gamma\uparrow + \gamma\downarrow \& $ $ e^++e^-+\gamma $	0
$\rho^+(u,\overline{d})$ od. $\rho^-(\overline{u},d)$	wie π ⁺ bzw. π ⁻	770	4,5*10 ⁻²⁴		1
ρ_0	wie π^0	775	4,5*10 ⁻²⁴		1

Tabelle 3: Die Mesonen

11 Farbneutrale Konglomerate aus drei Quarks – die Baryonen

Es gibt Baryonen mit Spin 1/2 und mit 3/2, je nach Ausrichtung der Spins der drei Konstituentenquarks; ein Spin antiparallel – infolge der Wechselwirkung der Quarks wird das Quark mit antiparallelem Spin ständig gewechselt – oder alle Spins sind parallel, wobei letzteres zu einer größeren Ruhenergie führt. Es werden hier nur die Fälle mit den beiden Quarks u und d der ersten Familie betrachtet. Die drei Quarks müssen sich in ihrer (effektiven) Farbladung unterscheiden.

Unten in der Tabelle 4 sind die vier möglichen Dreierkombinationen der beiden Quarks angegeben, ebenso einige Eigenschaften speziell für Spin $\frac{1}{2}$ -Teilchen. Die Spin-3/2-Teilchen werden als Δ -Baryonen bezeichnet, kurz Δ^{++} (uuu), Δ^{+} (uud), Δ^{0} (udd) und Δ^{-} (ddd). Zu all diesen Baryonen gibt es noch die Anti-Baryonen mit inversen Ladungen. Wie üblich bedeutet hier der obere Index +,- oder 0 die elektrische Ladung (in Einheiten von e $^{+}$).

Alle vier Δ -Baryonen haben etwa die gleiche Ruhmasse von 1232 MeV/c² ($\approx 1,223~m_{p0}$) und die sehr kurze Lebensdauer von etwa $5,58*10^{-24}~s$. Die verhältnismäßig hohe Energie der Anregung von $\approx 0,223~m_{p0}$ Massenäquivalent wird in Form von π -Mesonen abgegeben. Die Zerfälle werden folgendermaßen angegeben: $\Delta^{++} \Rightarrow p^+ + \pi^+, \Delta^+ \Rightarrow n + \pi^+$ oder $p^+ + \pi^0, \Delta^0 \Rightarrow \pi^0 + n$ oder $p^+ + \pi^-, \Delta^- \Rightarrow n + \pi^-$, wobei die π -Mesonen weiter zerfallen. Nach hiesiger Vorstellung fehlt auf der linken Seite der Beziehungen jeweils ein Gluon, so dass

$$\Delta^{++} + G(d, d^{-}) \Rightarrow p^{+} + \pi^{+},$$
 (1.1)

$$\Delta^{+} + G(\mathbf{d}, \mathbf{d}^{-}) \Rightarrow n^{0} + \pi^{+} \text{ oder } \mathbf{p}^{+} + \pi^{0}, \tag{1.2}$$

$$\Delta^0 + G(u,u^-) \Rightarrow \pi^0 + n^0 \text{ oder } p^+ + \pi^-,$$
 (1.3)

$$\Delta^{-} + G(\mathbf{u}, \mathbf{u}^{-}) \Rightarrow \mathbf{n} + \boldsymbol{\pi}^{-}, \tag{1.4}$$

sein muss. Ohne Wechselwirkungsteilchen G würde Δ^{++} in $2e^++v^+$ (hauptsäch-

[‡] Ein sonst üblicher Normierungsfaktor $1/\sqrt{2}$ ist hier weggelassen

lich μ^+ anstatt e^+) zerfallen müssen, Δ^- in e^-+2v^- (hauptsächlich μ^- anstatt e^-), was die Erhaltung der Baryonen-Zahl verletzen würde. <u>Offensichtlich folgen aus dem Zerfall oder der Paarvernichtung von Teilchen nur in Wechselwirkung</u> mit den zugehörigen Bosonen die bekannten Teilchenzahl-Erhaltungssätze.

Das p^+ und das z^- sind bisher nicht beobachtet worden. Dass sie nicht existieren können wird verständlich, wenn man ihre Ladungsstruktur anschaut:

$$p^{++}(u_i, u_j, u_k) \uparrow \uparrow \downarrow : 4c_0 \uparrow \uparrow + 2c_0 \downarrow + c_i \uparrow + c_k \downarrow, \tag{2.1}$$

$$z^{-}(d_{i},d_{j},d_{k})\uparrow\uparrow\downarrow :3c_{0}^{-}\uparrow\uparrow\downarrow+(c_{j}+c_{k})^{-}\uparrow\uparrow+(c_{i}+c_{k})^{-}\uparrow\uparrow+(c_{i}+c_{j})^{-}\downarrow\downarrow. \tag{2.2}$$

Der Tausch der Eig von c_0^{\uparrow} und von c_k^{\downarrow} in (2.1) ist nicht möglich, da Teile der Eig zweier verschiedener Quarks durch Stösse nicht auszutauschen sind. Ebenso bei der Eig von $c_0^{-\downarrow}$ und $c_k^{-\uparrow}$ in (2.2). Somit ist eine Darstellung und die Existenz der p^{++} und z^{-} nicht möglich. Daran bringt auch die Einbeziehung eines Gluons keine Änderung, beispielsweise:

$$\begin{array}{c} p^{++}(u_{i},u_{j},u_{k})\uparrow\uparrow\downarrow + G(d_{k},d_{k}^{-})\uparrow\uparrow: 4c_{0}\uparrow\uparrow+2c_{0}\downarrow+c_{i}\uparrow+c_{j}\uparrow+c_{k}\downarrow +c_{0}\downarrow+c_{0}^{-}\uparrow+(c_{i}+c_{j})\uparrow\uparrow+\\ +(c_{i}^{-}+c_{j}^{-})\downarrow\downarrow \Rightarrow \quad 4c_{0}\uparrow\uparrow\uparrow+c_{0}^{-}\uparrow+(c_{i}\uparrow+c_{i}^{-}\uparrow)+(c_{j}\uparrow+c_{j}^{-}\uparrow) + \quad c_{0}\uparrow+2c_{0}\downarrow+ \quad (c_{i}\uparrow+c_{j}\uparrow+c_{k}\downarrow)\\ \qquad \qquad \Rightarrow p^{+}\uparrow+\pi^{+}\uparrow\downarrow, \qquad \qquad (2.1')\\ \text{(siehe hierzu} \bullet 12, S. 62 ff). \end{array}$$

Aus der Struktur der Ladungen der für die stoffliche Welt so wichtigen Elementarteilchen p⁺ und n⁰ können einige wesentlichen Eigenschaften abgelesen werden. Beispielhaft ist eine momentane Verteilung des Spins für p⁺↑ und n⁰↓ angegeben (der Ladungsindex ist nachfolgend weggelassen):

$$p(u_1\uparrow, u_2\uparrow, d_3\downarrow) : 4c_0^+\uparrow + c_0^-\downarrow + (c_1^+\uparrow + c_1^-\downarrow) + (c_2^+\uparrow + c_2^-\downarrow),$$

$$n(d_1\downarrow, d_2\downarrow, u_3\uparrow) : 2c_0^-\downarrow + 2c_0^+\uparrow + (c_1^-\downarrow + c_2^-\downarrow + c_3^-\downarrow) + (c_3^+\uparrow + c_3^-\downarrow).$$

$$(3.1)$$

Beim Proton treten (statisch) lediglich zwei Farbladungen und ihre Anti-Ladungen auf. Es ist somit, gemeinsam mit seinem angeregten Zustand Δ^+ , das einzige Quarkkonglomerat welches in sieben Dimensionen existiert, alle anderen Baryonen existieren in neun Dimensionen. Damit stellt es den Grundzustand aller Baryonen dar. Die Struktur seiner Ladungen (die nicht abgeschlossen sind) erlaubt keinen Zerfall in irgendwelche Teilchen, weshalb es stabil ist.

Nur unter Zufuhr von Energie und vor allem Ladungen in Form eines $G(d_i,d_{i-})$ -Gluons ist eine Umwandlung in ein anderes Baryon möglich

$$p^{+}+G(d_i,d_i^{-}) \Rightarrow n+e^{+}+\nu^{+}.$$
 (4.1)

Das Neutron hingegen hat ein abgeschlossenes System an Farbladungen und ein singuläres Farb-Antifarb-Paar.

Der Unterschied zwischen einem Proton und einem Antiproton besteht letztlich nur in der effektiven Ladung eines Positrons bzw. eines Elektrons, der zwischen einem Neutron und einem Antineutron letztlich nur in der inneren Ladung eines Antineutrinos bzw. eines Neutrinos.

Die Stärke der Bindung des abgeschlossenen Farbsystems in einem Neutron zur Bildung eines anderen Teilchens, hier eines Antineutrinos, überwiegt alle anderen Bindungen – der Zerfall des Neutrons in ein Antineutrino und anderen Teilchen ist ihm sozusagen "ins Gesicht geschrieben":

$n^0 + G(u_i, u_i^-) \Rightarrow p^+ + e^- + \overline{\nu}.$	(4.2)

Tabelle Baryonen Spin ½

ie				
Ruh-Energie $/c^2 = m_0$	937 (geschätzt)	938,272 046	55 379	941 (geschätzt)
Ruh-	(ges	938,27	9 881,5 ± 1,5 s 939,565 379	səg)
			s 5,1	
T_{m}	ċ	$7 > 10^{33} a$	1,5 ± 1	ં
		> 1	88	
Rn	6	7	6	6
Mögliche R _n Darst.	(2e ⁺ ,v ⁺)			(e ⁻ ,2v ⁻)
Mög Da	(2е			(e_
		j,	k, c -k	
Farbladung	c1,c2,c3	ci, c ⁻ i,cj,c ⁻ j,	c3), c	,c_2,c
Fark	\mathbf{c}_1	ci, c	(c ₁ ,c ₂ ,	2(c-1,c-2,c-3)
tr. Ing	0	2_0	(c_0	0_
Elek Ladu	9c0	4c ₀ ,	$2c_{0},2$	$3c_0$
ırks	j,uk)	j,d_k	j,u_k	$_{\rm j,dk}$)
Qua	$\left(u_{i},u_{j},u_{k}\right)$	(ui,u	(di,d	(di,d
Sym Quarks Elektr.	1. p++ nicht beob.	$p+$ (u_i,u_j,d_k) $4c_0,c^{-}_0$	$n^0 = \left[(d_i, d_j, u_k) \mid 2c_0, 2c^{-0} \mid (c_1, c_2, c_3), c_k, c^{-k} \right]$	z^{-} (d_i,d_j,d_k) nicht beob.
	1.	2.	3.	4.

i, j, k = 1, 2, 3; $i \neq j \neq j$

Tabelle 4

Das erforderliche ungeladene Gluon muss aus einer anderen Wechselwirkung "besorgt" werden, weshalb die mittlere Lebensdauer sehr lang ist. Der Nachweis zur Notwendigkeit eines Gluons bei diesen Umwandlungen kann durch Messung der Energie der Teilchen erfolgen, aber auch durch Messung der Spins der Teilchen, die auf der rechten Seite der Relationen auftreten. Sind deren Spins parallel, zusammen 3/2, muss ein Boson/Gluon beteiligt sein (es ist klar, den Spin der Neutrinos zu messen ist sehr schwierig). Tritt der Fall auf, dass die Summe der Energien von Proton und Elektron größer als die des Neutrons ist, müsste ohne Gluon die Energie des Neutrinos negativ sein. Dies kann man ausschließen, da sicherlich aus Teilchen mit positiver keine mit negativer Ruhenergie werden können.

Die Anzahl der Eigenschaften *e* ist bei beiden Teilchen n und p jeweils 9/3.

Ein Blick auf die Darstellung der Ladungen von Proton $p^+\uparrow$ und Neutron $n^0\downarrow$, insbesondere bei antiparallelem Spin, offenbart eine wesentliche Eigenschaft. Es scheint die "fehlende" und somit symmetriebrechende Farb-Antifarb-Ladung beim Proton die Ursache der stärkeren Farbwechselwirkung zu einem Neutron gegenüber einem weiteren Proton zu sein. "Fehlende" und "überschüssige" Farbladungen des Protons und des Neutrons ergänzen sich – bei deren richtiger Farb-Paarung – zu einem vollständigem Farbsystem (in Analogie zur chemischen Bindungskraft eines "fehlenden" und eines "überschüssigen" Elektrons bei zwei Atomen), welches zudem die Instabilität des derart gebundenen Neutrons aufhebt. Die Bindung der $c_1^{\pm}\uparrow$, $c_2^{\pm}\uparrow$, $c_3^{\pm}\uparrow$ sind wesentlich stärker als die zwischen Farb- und Antifarbladung $c_1^{\pm}\uparrow+c_1^{\mp}\uparrow$.

Sind die drei Farbladungen in einem Teilchen vereint, also in v^{\pm} , so existiert zwischen ihnen statisch keine Wechselwirkung (siehe 2. Hauptsatz, Seite 13). Auf Grund der Asymmetrie der schwingenden Ladungen entsteht eine minimale Ruhenergie. Die höhere Summe der Bindungsenergie der ursprünglich gebundenen Farbladungen geht in kinetische Energie der Neutrinos über. Kennt man die Energie und die Geschwindigkeit eines Neutrinos, kann man daraus seine Ruhenergie berechnen (\bullet 4, (4.2)).

Die elektrischen Ladungen $\{3c_0^{\pm}\}=\{e^{\pm}\}$ ergeben stets ein abgeschlossenes System, die (beiden virtuellen) der Photonen ein vollständiges.

Summarisch sind die Ladungen $\{p^+\uparrow + n\downarrow\} = \{2e^+\uparrow\downarrow + e^-\downarrow + v^+\uparrow + 2v^-\downarrow\downarrow\}$. Ein Zerfall von (p+n) ist nur über z.B.

$$p(u_1\uparrow,u_2\uparrow,d_3\downarrow) + n(d_1\downarrow,d_2\downarrow,u_3\uparrow) \rightarrow \Delta^{++} + \Delta^-$$
 (5)
und unter Zufuhr von Energie möglich, da die Kombinationen $(c_i^+\uparrow+c_i^-\downarrow)$ in (3) die kleinster Ruhenergie sind. Und beim Zerfall der Δ^{++} und Δ^- -Baryonen entstehen wieder jeweils ein Proton und ein Neutron, unter Zufuhr von Energie

in Form der Gluonen $G(d,d^-) \equiv \varepsilon_0$ und $G(u,u^-) \equiv \delta_0$, (siehe (1.1) und (1.4)), die zusammen aus dem universellen Pseudoboson α entstehen (siehe • 8.4, (4.3)).

Neben den Möglichkeiten des Zerfalles von Neutronen und der Stabilisierung durch Protonen fällt beim Betrachten der Struktur der Farbladungen des Neutrons auf, dass wegen der in ihnen enthaltenen singulären Farbladungen $(c_i \uparrow + c_i \downarrow)$ ein relativ stabiles Dreierkonglomerat von Neutronen existieren müsste. Ausführlich notiert ist beispielsweise

$$n_1\uparrow: (u_1\downarrow + d_2\uparrow + d_3\uparrow) + n_2\uparrow: (u_2\downarrow + d_1\uparrow + d_3\uparrow) + n_3\uparrow: (u_3\downarrow + d_2\uparrow + d_1\uparrow) \rightarrow 4*(c_1^-\uparrow + c_2^-\uparrow + c_3^-\uparrow) + (c_1\downarrow + c_2\downarrow + c_3\downarrow) + 2e^+\downarrow + 2e^-\uparrow$$

$$(5.1)$$

eine Struktur ausgesprochen hoher Symmetrie der Farb- und elektrischen Ladungen. Nur die Verteilung der Spins ist nicht symmetrisch. Mit weiteren drei Neutronen, deren Spin umgekehrt ist, ist die Symmetrie für Neutronen maximal. Einen höheren Grad an Symmetrie der Farbladungen bringen drei Protonen

$$p_{1}\uparrow: (d_{1}\downarrow + u_{2}\uparrow + u_{3}\uparrow) + p_{2}\uparrow: (d_{2}\downarrow + u_{1}\uparrow + u_{3}\uparrow) + p_{3}\uparrow: (d_{3}\downarrow + u_{2}\uparrow + u_{1}\uparrow) \rightarrow 2*(c_{1}\uparrow + c_{2}\uparrow + c_{3}\uparrow) + 2*(c_{1}\downarrow + c_{2}\downarrow + c_{3}\downarrow) + 4e^{+}\uparrow + e^{-}\downarrow,$$

$$(5.2)$$

deren Spin-Asymmetrie durch einen weiteren Protonen-Dreiersatz mit umgekehrtem Spin beseitigt werden kann. Aus diesem Grund sind Atomkerne mit $3k(p^++n^0)$, k=1, 2, 3, 4, 5 Nukleonen stabil, davon Kohlenstoff, k=2, im Kosmos besonders häufig.

In größeren Konglomeraten aus p^+ und n^0 können wegen dessen Dynamik die Protonen eine größere Anzahl Neutronen stabilisieren; etwa 1,5 mal so viele (Tritium ist mit Faktor 2 sozusagen eine Ausnahme, t_m über 12 Jahre).

Das stabile Dreier- oder Sechser-Konglomerat von Neutronen ermöglicht die Existenz von Neutronen-Sternen, jedenfalls deren äußeren Schicht. [

]

Das stabile Quark-Konglomerat Proton zeigt bei Streuexperimenten mit Elektronen/Positronen interessante Effekte (siehe z.B.: Im Herzen der Materie, Der Elektron-Proton-Beschleuniger HERA und die "wee"-Partonen, Allen Caldwell und Günter Grindhammer, in: Physik Journal 6 (2007) Nr. 11). Gelangt z.B. ein Elektron in ein Proton, entsteht ein Photon (z.B. durch Bremsstrahlung infolge der elektrischen Ladung der Quarks). Ist der Raum Δx_z des Photons (beachte: das Wellenpaket, also die Kohärenzlänge, ist wesentlich größer! – und hier unwesentlich) innerhalb des 7-dimensionalen Raumes des statischen Protons, kann es sich ähnlich wie in einem Quark in diese höheren Dimensionen "aufweiten"; es kann sich in ein Boson $\delta_{(i)}$ mit einer Farbladung (und Gegenladung) oder bei geringfügig höherer Energie in ein Boson $\varepsilon_{(k)}$ mit zwei Farbladungen (und deren Gegenladungen) umwandeln. Das Boson $\varepsilon_{(k)}$ passt zu dem entsprechenden $d_{(k)}$ -Ouark, es existiert ja in denselben Dimensionen und kann deshalb mit ihm in Wechselwirkung treten. Das δ_0 -Boson besitzt eine der Farbladungen der beiden u-Quarks und kann so mit einem der u-Ouarks wechselwirken. Die Helizität der Teilchen muss dabei übereinstimmen. Alle diese Bosonen bilden bei genügend hoher Energie weitere Bosonen-Antibosonen, Quarks-Antiquarks, die das Proton als Konglomerate in sogenannten Jets verlassen können.

Die Konglomerate sind – ebenso wie die Komponenten – dynamische Systeme. So existiert in einem Proton im ständigen Wechsel auch die dritte Farbladung der Quarks und der Bosonen. Wäre dies nicht so, müsste das

Proton eine deutlich geringere Ruhenergie als das Neutron haben – grob 7/9 davon. Über einen längeren Zeitraum als die Zeit ta eines Quarks gemittelt, hat das Proton rechnerisch knapp neun Raumdimensionen. Ist die Zeit ty des Photons deutlich größer als die des Quarks, befindet es sich sozusagen in einem 9-dimensionalen Raum. Deshalb kann es sich in alle drei möglichen δ_{0} und ε_(k)-Bosonen umwandeln, die mit den zugehörigen Quarks, wiederum bei gleicher Helizität, in Wechselwirkung treten können. Das Photon kann sich aber auch in ein Coloron ζ umwandeln. Bei gleicher Wahrscheinlichkeit aller Bosonen mit Farbladung ci wäre das ein Anteil von 1/7, welches keiner Wechselwirkung mit den Bestandteilen des Protons unterliegt. Denn es kann nur mit Neutrinos/Antineutrinos wechselwirken, und das extrem schwach, wird also in den Detektoren (bei HERA) nicht registriert. Es könnte mit dem in der oben zitierten Arbeit erwähnten Pomeron identisch sein. Es taucht die Frage auf, ob und unter welchen Bedingungen, und nach welcher Zeit (oder Weg) sich ein Coloron in ein Photon umwandeln kann. Andere Reaktionen, z.B. der Zerfall der π^0 -Mesonen, legt eine solche Umwandlung nahe.

Wenn man analoge Experimente mit Neutronen anstatt Protonen realisieren könnte, würden sogar im statisch gedachten Neutron Coloronen entstehen. Das hätte zur Folge, auch mit sehr kleiner Zeit \mathbf{t}_{γ} des Photons, d.h. mit höchstenergetischen, Coloronen erzeugen zu können. $[\bullet]$

Die sogenannten W-Bosonen sind nur als zusammengesetzte Teilchen darstellbar. Für sie kommen auch nicht die Bosonen Nr. 7 in Betracht, wie ihr Zerfall zeigt. Sie können nur mit den oben angegebenen exotischen α -Quasi-Bosonen im Zusammenhang stehen (siehe • 8.4), als ihre Zerfallsprodukte

$$\delta_{(i)} + \epsilon_{(i)} \Rightarrow B^{00i}_{0jk} + (B^{00i}_{0jk}) \xrightarrow{} B^{000,123} + B_{000,123} \equiv W^{+} + W^{-}$$
(6)

(siehe • 8.4 (4.3)). Diese extrem kurzlebigen Teilchen stellen lediglich einen Übergangszustand (eine sogenannte "Resonanz") dar:

$$W^{+} \Rightarrow e^{+} + \nu^{+} \text{ und } W^{-} \Rightarrow e^{-} + \nu^{-}, \tag{7}$$

sind ebenfalls nur Quasi-Teilchen. Für die in der Tabelle aufgeführten Bosonen werden modifizierte W-Bosonen eingeführt, die hier mit Π bezeichnet werden:

$$\Pi^{+} \equiv B^{000}_{123} \text{ und } \Pi^{-} \equiv B^{123}_{000} ,$$
 (8) die die Zerfälle

$$\Pi^{+} \Rightarrow e^{+} + v^{-} \text{ und } \Pi^{-} \Rightarrow e^{-} + v^{+}$$

$$\tag{9}$$

zeigen müssten. Solche Bosonen sind jedoch (vermutlich) noch nicht beobachtet worden.

Das elektrisch neutrale Boson Z⁰ wird aus den Wechselwirkungen der sog. neutralen Ströme abgeleitet. Links auf der Abbildung 2 (nächste Seite) wird die Streuung eines Elektrons mit einem Tauon dargestellt (das Tauon ist der "überschwere" Bruder des Elektrons, s. u.). Rechts auf der Abbildung ist die Streuung eines Elektrons mit einem Tau-Neutrino dargestellt. Diese zuletzt genannten Wechselwirkungen vermittels der W- und Z-Bosonen werden hier anders interpretiert (siehe folgenden Abschnitt).

• 12 Wechselwirkung von Leptonen mit Leptonen ohne Bosonen

Bisher wurden Wechselwirkungen durch Bosonen betrachtet. Dazu sind Überschneidungen der Räume der Teilchen notwendig. Z.B. überschneiden sich Fermionen mit ihren Bosonen, aber nicht Teilchen der gleichen Art und Teilchen mit ihren Antiteilchen (s. hierzu •20.2 Das Pauliprinzip ...). Dabei spielen in der Regel mehrere Prozesse eine Rolle, die jeweils in Feynman-Graphen/Diagrammen charakterisiert werden können. Dies wird im weiten Feld der Quantenelektrodynamik (QED) behandelt (siehe Landafschitz, Bd. IV Relativistische Quantentheorie).

Bei verschiedenen Leptonen-Familien (Teilchen der I., II. und III. Art) kann die Wechselwirkung durch einen einzigen Prozess beschrieben, und so mit nur einem Feynman-Graphen dargestellt werden (s. Fig. 2, die Richtung der Zeit ist hier von unten nach oben).

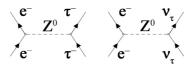


Fig. 2: Wechselwirkungen des sogenannten Z⁰-Bosons

In solchen Fällen kann man davon ausgehen, dass die Räume der Teilchen sich nicht überschneiden, sie können infolge unterschiedlicher erweiterter Helizität sich nicht durchdringen, sie "prallen" aneinander ab. Dies folgt aus den Modellen des Myons μ^{\pm} und des Tauons τ^{\pm} als Teilchen mit erweitertem Spin (siehe • 3.3.1, S. 11) und dem des Elektrons. Man sollte in diesen Fällen davon ausgehen, dass man direkte Wechselwirkungen als elastische, aber auch als plastische Stöße im klassischen mechanischen Sinne – mit einer Besonderheit, s.u. – behandeln kann. Die Teilchen wirken aufeinander wie Körper, als eher flache oder umgekehrt als lang gestreckte Ellipsoide, mit einer ausgezeichnete Richtung.

Zu beachten ist hierbei die räumlich-zeitliche Unschärfe. Da die Teilchen in ihren Raumdimension eine Unschärfe besitzen, sind Ausdehnung und Dauer des Stoßes endliche Größen, ebenfalls mit Unschärfe. In der derzeit gängigen Theorie werden diese Stöße mit einer (mittleren) Lebensdauer und folglich einer Ruhenergie, als W^{\pm} - oder Z^0 -Bosonen umschrieben. Es handelt sich nach hiesigen Grundlagen nicht um reale Teilchen, bestenfalls können sie als Hilfsgrößen dienen. $[\blacksquare]$

Als weiterer Fall gilt die Wechselwirkung von Elektronen $e^{\pm} \equiv e_I^{\pm}$, Myonen $\mu^{\pm} \equiv e_{II}^{\pm}$ und Tauonen $\tau^{\pm} \equiv e_{III}^{\pm}$, mit Neutrinos $\nu_e^{\pm} \equiv \nu_I^{\pm}$, $\nu_{\mu}^{\pm} \equiv \nu_{II}^{\pm}$ und $\nu_{\tau}^{\pm} \equiv \nu_{III}^{\pm}$ (die Teilchenfamilie wird als unterer, nachgestellter Index I, II oder III markiert). Zur Wechselwirkung könnten die hypothetischen Bosonen $\Pi^{+} \equiv B^{000}_{123}$ und $\Pi^{-} \equiv B^{123}_{000}$ (auch die höherer Familien) beitragen, hauptsächlich dürfte sie durch "klassische" Stöße, die allerdings nur auf den Hauptachsen im dreidimensionalen Photonenraum erfolgen.

Als erstes Beispiel wird der Zerfall eines Myons betrachtet. Da dessen Struktur, die Helizität des Raumes, nicht verschwinden kann, kann es nur mit einem anderen Teilchen die Eig/Ladung tauschen. Dies geschieht am einfachsten mit einem Elektron-Anti-Neutrino oder einem Elektron-Neutrino, welches eventuell aus der Aufspaltung eines Colorons entstanden ist.

Dazu gibt es vorläufig zwei Schemata (Fig. 3a, 3b):

$$\begin{pmatrix} e_{II}^{-} \\ \zeta_{I} \end{pmatrix} \Rightarrow \begin{pmatrix} e_{II}^{-} \\ v_{I}^{+} \\ v_{I}^{-} \end{pmatrix} \Rightarrow \begin{pmatrix} e_{II}^{-} \\ v_{I}^{-} \\ v_{I}^{+} \end{pmatrix} \Rightarrow \begin{pmatrix} v_{II}^{-} \\ e_{I}^{-} \\ v_{I}^{+} \end{pmatrix} \Rightarrow \begin{pmatrix} e_{II}^{-} \\ e_{II}^{-} \\ v_{I}^{-} \end{pmatrix} \Rightarrow \begin{pmatrix} e_{II}^{-} \\ v_{I}^{-} \\ v_{I}^{-} \end{pmatrix} \Rightarrow \begin{pmatrix} v_{II}^{+} \\ v_{II}^{-} \\ v_{II}^{-} \\ v_{II}^{-} \end{pmatrix} \Rightarrow \begin{pmatrix} v_{II}^{+} \\ v_{II}^{-} \\ v_{II}^{-} \\ v_{II}^{-} \end{pmatrix} \Rightarrow \begin{pmatrix} v_{II}^{+} \\ v_{II}^{-} \\ v_{II}^{-} \\ v_{II}^{-} \end{pmatrix} \Rightarrow \begin{pmatrix} v_{II}^{+} \\ v_{II}^{-} \\ v_{II}^{-} \\ v_{II}^{-} \\ v_{II}^{-} \\ v_{II}^{-} \end{pmatrix} \Rightarrow \begin{pmatrix} v_{II}^{+} \\ v_{II}^{-} \\ v_{II}^$$

Fig. 3a, 3b: Zerfall eines Myons

Die Teilchen behalten ihre "Familie"; durch einen Stoß unterschiedlicher Familien der Teilchen eines Halbraumes werden die Ladungen gegenseitig ausgetauscht, in 3a noch die beiden Halbräume der beiden Neutrinofamilien

Der Zerfall eines Myons wird folgendermaßen dargestellt, was Fig. 3b entspricht, also im gleichen Halbraum:

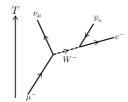


Fig. 3c: Feynman-Diagramm des beobachteten Prozesses (aus Wikipedia)

Der Unterschied zwischen 3a und 3b besteht darin, dass der Austausch mit dem Neutrino (rechts, 3b) oder dem Antineutrino (links, 3a) erfolgt; ihm liegen zwei verschiedenartige Stoßprozess zugrunde.

Im Fall 3b bewirkt der Stoß des Neutrinos auf das negativ geladenen Myon auf dessen Verschiebung im gleichen Halbraum der Zusatzdimensionen der Neutrinos. Gleichzeitig wechseln die Farb-Ladungen des Neutrinos im gleichen Halbraum zu einer elektrischen Ladung. Durch den Stoß werden die Eig/Ladungen des positiven Halbraumes wechselseitig getauscht. Unberührt bleibt das Anti-Elektron-Neutrino im negativen Halbraum, welches seine antiladungen Ladung behält.

Im Fall 3a gibt es einen Stoss mit Verschiebung der Eig/Ladungen über beide Halbräume hinweg, die Eig/Ladungen wechseln die Halbräume. Deshalb ist dieser Prozess unterdrückt. Hier bleibt das Elektron-Neutrino unberührt und behält ebenfalls seine Ladung, andererseits entsteht aus dem Myon ein Anti-Myon-Neutrino.

Dass generell beim Zerfall eines Myons e_{II} ein Coloron vorhanden sein muss, ist nach den bereits behandelten Grundsätzen klar. [■]

Als zweites Beispiel wird die Umwandlung eines Elektronneutrinos/-antineutrinos durch einen Stoß mit einem Myon/Antimyon in ein Myon-neutrino/-

antineutrino und ein Elektron/Positron gezeigt . Es folgen Beispiele mit Teilchen anderer Familien. Man kann sich hierbei auf einzelne Stoß-Prozesse beschränken, z.B.:

$$\left(\begin{array}{c} {\boldsymbol{v}_I}^{+/-} \\ {\boldsymbol{e}_{I\!I}}^{-/+} \end{array} \right) \Longleftrightarrow \left(\begin{array}{c} {\boldsymbol{e}_I}^{-/+} \\ {\boldsymbol{v}_{I\!I}}^{+/-} \end{array} \right) \ \left(\begin{array}{c} {\boldsymbol{v}_I}^{+/-} \\ {\boldsymbol{e}_{I\!I\!I}}^{-/+} \end{array} \right) \Longleftrightarrow \left(\begin{array}{c} {\boldsymbol{e}_I}^{-/+} \\ {\boldsymbol{v}_{I\!I\!I}}^{+/-} \end{array} \right) \ \left(\begin{array}{c} {\boldsymbol{v}_{I\!I}}^{+/-} \\ {\boldsymbol{e}_{I\!I\!I}}^{-/+} \end{array} \right) \Longleftrightarrow \left(\begin{array}{c} {\boldsymbol{e}_{I\!I}}^{-/+} \\ {\boldsymbol{v}_{I\!I\!I}}^{+/-} \end{array} \right)$$

Fig. 4: Änderungen der Familie von Neutrinos/Antineutrinos über Stöße mit Myonen/Antimyonen oder Tauonen/Antitauonen und Myonneutrinos/Myonantineutrinos mit Tauonen/Antitauonen.

Er kann auch in die umgekehrte Richtung verlaufen. Die so entstandenen Neutrinos höherer Familien können sich durch entsprechende Stöße wieder in niederere umwandeln.

[In früheren Versionen dieser Arbeit wurden solche Stöße als Ursache der Neutrinooszillationen angesehen, dafür ist in der Regel die Dichte der Stoßpartner zu gering. Es gibt hierfür andere Ursachen, siehe • 8.2.2 Neutrinooszillation.]

Die Beobachtung lehrt uns: <u>Die (Halb-)Räume zweier stoßender Leptonen</u> verschiedener Generation sind gleich, die Stöße unterschiedlicher (Halb-) Räume werden unterdrückt. [©]

Es gibt auch Stöße, die ohne Wechsel von Eig und Anti-Eig erfolgen, nämlich wenn die Ausgangsteilchen entweder nur aus Eig e^+ oder nur aus Eig e^- bestehen. Das ist z.B. der Fall, wenn π^{\pm} -Mesonen beteiligt sind:

ausserdem:

Fig. 5: Zerfall eines Pions

Die Doppelpfeile markieren die Helizität, die einfachen Pfeile den Spin

Durch einen plastischen Stoß der beiden (zweischleifigen) Tori des u- und des d-Quarks werden deren Ladungsflächen ci bzw. co vertauscht. Dabei entstehen abgeschlossene elektrische und abgeschlossene Farbladungen. Entsprechend der Energie des Pions entstehen Leptonen höherer Familie (hauptsächlich II., aber nicht III.). Zu beachten ist, dass hier die Spins entgegengesetzt sind, aber die Helizitäten der beiden Quarks und die der beiden Leptonen parallel sind.

Zwischen den Farbladungen c_i des u-Quarks und c_j, c_k des d⁻-Quarks herrscht die sehr starke Farb-Wechselwirkung, die zur Vereinigung zu einem Neutrino ohne innere Wechselwirkung der Farbladungen führt. Dies führt zu einem großen Unterschied der Ruhenergie zwischen beiden Seiten der Reaktionsbeziehung zwischen Pion einerseits und Elektron/Myon und Neutri-

no andererseits. Dieses Ungleichgewicht wird zum Teil durch die Entstehung eines Myons anstatt eines Elektrons "abgefedert".

Das beim Pionzerfall (Fig. 5) entstandene Anti-Myon zerfällt nach rund $2,2x10^6$ sek. in ein Positron und ein Neutrino, das Coloron ζ wirkt ähnlich wie ein Katalysator in der Chemie:

Fig. 6: Zerfall eines Pions und des Anti-Myons

Letztlich zerfällt ein Pion in ein Positron (neg. Spin), ein Elektron-Neutrino und ein "unsichtbares" Coloron.

Zum Nachweis von Myon-Neutrinos kann folgende Reaktionenfolge dienen, wobei ein Photon benötigt wird:

$$\left(\begin{array}{c} v_{II}^{+} \\ \gamma \end{array} \right) \Leftrightarrow \left(\begin{array}{c} v_{II}^{+} \\ e_{I}^{-} \\ e_{I}^{+} \end{array} \right) \Leftrightarrow \left(\begin{array}{c} e_{II}^{-} \\ v_{I}^{+} \\ e_{I}^{+} \end{array} \right) \Leftrightarrow \left(\begin{array}{c} e_{II}^{-} \\ d^{-} \\ u^{+} \end{array} \right) \Leftrightarrow \left(\begin{array}{c} e_{II}^{-} \\ \pi^{+} \end{array} \right)$$

Fig 7: Nachweis eines Myon-Neutrinos v_{μ}^{+}

Bei genügend hoher Energie erfolgt die weitere Reaktion aus dem Neutrino und dem Positron zu einem d $^-$ - und u-Quark, letztlich zu einem – in einer Blasenkammer nachweisbaren – Pion π^+ .

Damit scheint klar, dass "Umsortieren" der Eig bei zusammengesetzten Teilchen, z.B. beim Zerfall des Neutrons (siehe • 11, (4.2), S. 57 ff), wird durch Stöße der enthaltenen Leptonen herbeigeführt.

Mit den hier beispielhaft vorgestellten Reaktionen lassen sich bei entsprechender Umformung alle "elektroschwachen" Wechselwirkungen darstellen.

Was ist der wesentliche Unterschied zwischen den Prozessen, die entweder durch Z- oder durch W-Pseudo-Bosonen beschrieben werden? Ein Blick auf die Feynman-Diagramme von Z-Prozessen (siehe Fig. 2 in • 12, S. 62 ff) und W-Prozessen, z.B. auf das Schema in Fig. 4 oben, zeigt: im ersten Fall handelt es sich um elastische Stöße, bei denen die Teilchen selbst nicht umgewandelt werden, im zweiten Fall um einen plastischen Stoß mit einer Umwandlung der Teilchen. Damit ist klar, weshalb die Pseudobosonen Z und W eine Ruhenergie besitzen, denn bei Stößen ist neben den Impulsen die Energie eine wesentliche Größe (siehe Landafschitz I, Kap. IV und II, Kap. II). Der Übergang von einem elastischen zu einem plastischen Stoß erfordert eine Mindestenergie, die sich in dieser Ruhenergie widerspiegelt. [■]

Streuguerschnitte von Neutrinos/Antineutrinos mit Elektronen:

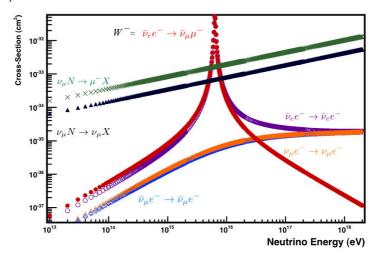


FIG. 29 Neutrino electron and nucleon scattering in the ultra high energy regime ($E_{\nu} \geq 10^4$ GeV). Shown are the electron interactions $\bar{\nu}_{\mu}e^{-} \rightarrow \bar{\nu}_{\mu}e^{-}$ (crosses, blue), $\nu_{\mu}e^{-} \rightarrow \nu_{\mu}e^{-}$ (diamonds, orange), $\bar{\nu}_{e}e^{-} \rightarrow \bar{\nu}_{e}e^{-}$ (hollow circles, violet), $\bar{\nu}_{e}e^{-} \rightarrow \bar{\nu}_{\mu}e^{-}$ (filled circles, red), and the nucleon charged current (cross markers, green) and neutral current (filled triangles, black) interactions. The leptonic W resonance channel is clearly evident (Butkevich et al., 1988; Gandhi et al., 1996).

• 13 Erweiterte Helizität/erweiterterSpin

Wie in • 3.3.1 eingeführt, ist ein erweiterte Spin vorhanden, wenn $\mathcal Z$ und $\mathcal T$ in $\mathcal G=\mathcal Z/\mathcal T$ einen Teiler $N\neq 1$ haben, sozusagen gekürzt werden könnte. $\mathcal T$ ist die Torsion des Torus, wobei die Werte (0), ± 1 , ± 2 , ± 3 usw. angenommen werden können, und $\mathcal Z$ die Anzahl der Schleifen des Torus, mit den möglichen Werten 1, 2, 3 usw. Bild 3, S. 71 zeigt einen Torus mit $\mathcal T=-2$, $\mathcal Z=2$, sozusagen ein erweitertes Photon. Das bedeutet, dass ein Teilchen mit der Helizität $\mathcal G$ invariant gegenüber einer Drehung ϕ_0 , mit $\phi_0=2\pi\mathcal G=2\pi\mathcal Z/\mathcal T$ ist, d. h. der Phasenwinkel α_0 der Torsion kehrt bei einer Drehung des Torus genau um ϕ_0 zum gleichen Winkel α_0 zurück. Das heißt aber auch, dass sich bei einem Teilchen der Betrag der Helizität nicht ändert, da diese Symmetrie für jeden Winkel α_0 gilt.

Teilchen, die sich durch verschiedene Werte von N unterscheiden, haben unterschiedliche Ruhenergie, auch wenn die anderen elementaren Eigenschaften, z.B. die Ladung, gleich sind. Die Energie ist um so größer, je größer N ist, also \mathcal{Z} und \mathcal{T} es sind. Dies rührt von der Schwingung des Raumes der die

Ladung enthält und bei höherem \mathcal{Z} komplexer ist und mit größerer Torsion \mathcal{T} stärkere "Spannungen" besitzt. Ob die beträchtlichen Unterschiede der Ruhenergie bestimmter Teilchen damit erklärt werden kann, ist nicht sicher, scheint jedoch eine nahe liegende Möglichkeit. Auf dieser Grundlage kann man die Einteilung der Elementarteilchen entsprechend ihres Erweiterungsfaktors N und größeren Ruhenergie in Familien (manchmal auch Generationen genannt) vornehmen. So wird aus einem Elektron (\mathcal{T} =1, \mathcal{Z} =2) aus der 1. Familie, ein Myon (\mathcal{T} =2, \mathcal{Z} =4) aus der 2. Familie, und ein Tauon (\mathcal{T} =4, \mathcal{Z} =8) aus der 3. Familie. Dies gilt in dieser Form für "einfache" Elementarteilchen, nicht für Konglomerate wie Neutron und Proton.

Nach dieser Vorstellung wäre zu verstehen, dass Konglomerate aus Quarks unterschiedlicher Generation, und somit in Räumen unterschiedlicher Geometrie, schwerer zerfallen als solche aus einheitlicher Generation. So ist die mittlere Lebensdauer von $K^-(u^-,s)$ rund zwanzig mal länger als die von $\pi^ (u^-,d)$. u und d sind Quarks der 1. Generation, s ein Quark 2. Generation.

Im Zusammenhang mit dem Rang einer Familie scheint die Anzahl der Dimensionen eines Teilchens sich nicht zu ändern. [■]

Es taucht die Frage auf, ob sich Teilchen mit erweitertem Spin in Teilchen mit weniger oder nicht erweitertem Spin umwandeln können. Für Teilchen mit Ruhenergie, siehe den Zerfall von Myonen in Elektronen oder den Zerfall von Tauonen in Myonen oder Elektronen – ist dies durch Beobachtung beantwortet: Es scheint einen "Erhaltungssatz" des Grades der Familie zu geben (siehe einige Beispiele aus dem vorangehenden Abschnitt • 12). Zerfällt ein Teilchen einer (höheren) Familie, entsteht auf jedem Fall ein anderes Teilchen der selben Familie, aber mit geringerer Ruhenergie.

Die Änderung der Familie bei Neutrinos, die sogenannte Neutrinooszillation, findet hier eine konsistente Erklärung (siehe • 8.2.2, S. 45) durch die WW mit einem nicht beobachtbaren Coloron anderer Familie.

Bei den Bosonen γ und ζ mit ihren virtuellen Ladungen ist es einfach sich die Umwandlung mit erweitertem Spin vorzustellen, insbesondere beim Photon mit nur einer Ladung und einer Antiladung. Man stelle sich im Beobachterraum den Torus des Photons mit der Torsion von 1 vor. Der Torus wird zu einer ∞ verdreht, wiederum ohne Änderung der Torsion, wie bei der Paarerzeugung von Positron und Elektron, aber ohne Trennung des Photonenraumes in beide Halbräume. Daraufhin wird im Beobachterraum diese ∞ zu einer Doppelschleife zusammengelegt. Dabei ändert sich die Torsion um +1 oder -1, je nach Richtung des Zusammenklappens. Es wird also in Richtung zunehmender Torsion zusammengeklappt, schematisch in Abb. 3. Exotische und erweiterte Helizität, S. 71 dargestellt. Nun ist N = 2. Wiederholt man dies, erhält man ein Photon 3. Familie mit N = 4.

Problemlos lassen sich die Schleifen/Windungen wieder auflösen. Man erkennt, die erweiterten Photonen sind dem einfachen Photon äquivalent und können sich ohne jede andere Änderung ineinander umwandeln. Analog erhält man die höheren Generationen des ζ-Bosons, allerdings in sieben Dimensionen. Da die Ruhenergie der Photonen und der Coloronen Null ist, kann sie sich nicht erhöhen. Das bedeutet, die Änderung der Familie dieser beiden Teilchen

erfolgt ohne Zufuhr von Energie bzw. ohne Wechselwirkung mit anderen Teilchen; ihre Energie ist unabhängig von N, folglich gibt es hierfür keine Erhaltung der Familie. Bei einer Wechselwirkung mit einem Lepton passt sich N offensichtlich an. Nur so ist es möglich, dass z.B. Photonen mit den verschiedenen Familien e[±]I,II,III</sub> wechselwirken können, sich letztlich die elektrischen Felder der Elektronen, Myonen und Tauonen nicht voneinander unterscheiden. (Nicht so beim magnetischen Moment!)

Unproblematisch ist die Darstellung von Teilchen nicht nur mit $\mathcal{T}=1$, sondern auch für $\mathcal{T}=2$, $\mathcal{T}=3$ usw. aber auch mit $\mathcal{Z}=1$, 2, 3, usw. denkbar, also mit $\hat{s}=\frac{1}{3},\frac{2}{3},\frac{1}{4},\frac{3}{4}$ usw. Dies hat andere Symmetrien der Ladungen zur Folge. Z.B. bei $\hat{s}=\frac{1}{3}$ wären Teilchen möglich, die mit einer SU(3)–Gruppe zu beschreiben wären. Im nächsten Abschnitt • 14 Subteilchen wird ein Beispiel mit $\hat{s}=\frac{1}{6}$ betrachtet.

14 Subteilchen

In den früheren Abschnitten über die Entstehung von Elektronen und Positronen aus Photonen ist die Trennung der Eigenschaften e^+ und e^- beschrieben. Wenn man an Quarks denkt, die aus Drittelung der Eig e^+ und e^- bestehen, kann man Subelektronen/Subpositronen konstruieren, deren Ladungen $c_0^{\pm} = \frac{1}{3}e^{\pm}$ sind und deren Spin jeweils $\frac{1}{6}h$ ist. Auf Grund der komplexeren Struktur als Sechsfachschleifen müssten sie eine um Größenordnungen größere Ruhenergie als Elektronen/Positronen haben, vergleichbar der Ruhenergie eines Tauons. Bei der "Paarerzeugung" aus einem Photon würden jeweils drei Subelektronen und drei Subpositronen entstehen. In höheren Dimensionen (Farbflächen) und der Torusachse im Beobachterraum hätte man Teilchen mit singulären Farbladungen, ebenfalls mit $\frac{1}{6}h$ Spin.

Die implizierten Wechselwirkungs- oder Feldteilchen bestehen aus der kurzzeitigen Verbindung eines Subteilchens mit seinem Antiteilchen – mit der Ladung und Gegenladung $\frac{1}{3}e^{-}$ und $\frac{1}{3}e^{+}$. Beide haben die gleiche Torsion ± 1 und die gleiche Anzahl von Schleifen, also entgegengesetzten Spin. Die Ruhenergie ist nahezu das Doppelte eines Subteilchens. Letztlich gibt es keine Feldteilchen, die Wechselwirkung besteht direkt mit einem unmittelbar benachbarten Sub-Antiteilchen. Wegen der hohen, vermutlich der höchsten existierenden, Ruhenergie, nimmt Materie bestehend aus Subteilchen den kleinstmöglichen Raum ein. Sie existieren nur als ein Konglomerat und bilden eine neuartige Erscheinungsform der Materie mit extrem kurzer Lebensdauer, bei genügend hohem Druck (die Helizität verhindert eine Vereinigung). Die elektrischen Ladungen sind bei diesen Subteilchen den Farbladungen "ähnlicher"; jedes Subteilchen hat nur eine Ladung und somit nur drei Raumdimensionen, die Torusachsen aller Subteilchen der sichtbaren Materie sind im Raum der elektrischen Ladungen (s.a. • 16). Insofern sind die elektrischen mit den farblichen Ladungen (noch) nicht gleichgestellt, also noch unterscheidbar.

• 14.1 Gammablitze

Die Bestätigung der Existenz von Subteilchen könnten die kosmischen Gammablitze sein.

Besteht ein kosmisches Objekt aus einem Gluon-Quark-Elektron-Gemisch (plus den "eingefangenen" Photonen) wie es eine Schicht eines Neutronensternes darstellt, so kann bei zunehmender Dichte und zunehmendem Druck ein kritischer Wert erreicht werden, bei dem das Gemisch sich in Subteilchen umwandelt. Dabei bilden die Subteilchen wegen ihrer wesentlich höheren Dichte einen viel kleineren Kern als den des ursprünglichen Neutronensternes, der nun ein vollständiges (Farb-) und ebenso elektrisches Ladungssystem bildet, welches sich instantan in Photonen und Coloronen umwandelt – der Kern des Neutronensternes "zerstrahlt" in Coloron- und Gamma-Blitze. Mit Ausnahme der Neutrinos haben die Coloronen mit anderen Teilchen keine Wechselwirkung und können selbst dichteste Materie durchdringen. Sie zerfallen in Neutrinos/Antineutrinos oder werden Photonen, sobald sie in den Beobachterraum gelangen.

• 14.2 "Schwere" Schwarze Löcher

Enthält das in • 14.1 beschriebene Gemisch von Subteilchen so viel Ruhenergie (bzw. Masse), dass es innerhalb seines Schwarzschildradius liegt (*Karl Schwarzschild*, 1873 in Frankfurt/Main – bis 1916 in Potsdam), bildet es ein Schwarzes Loch. Andersherum gesagt, ein "massereiches" Schwarzes Loch. Ab einer kritischen Masse bildet es bei seiner Entstehung kurzzeitig ein Gemisch aus Subteilchen. Dabei wird die Materiedichte stark erhöht und der Materieball ist ein neundimensionaler physikalischer Raum geworden, wodurch wiederum die Dichte steigt. Letzterer ist eine Folge der unterschiedlichen Radien eines bestimmten Volumens in Abhängigkeit von der Anzahl der Dimensionen seines Raumes (im ungekrümmten Raum $V_3=^4/_3\pi r^3\approx 4,19r^3$, $V_9=^{32}/_{945}\pi^4 r^9\approx 3,3r^9$).

Sobald die Subteilchen entstanden sind vereinigen sie sich zu den dreidimensionalen Photonen und den Coloronen. Diese Bosonen haben keine Ruhenergie/Ruhmasse, weshalb sie sich jeweils durchdringen können (nur diese Bosonen haben diese Eigenschaft). Dies ist eine notwendige Voraussetzung zu einer beliebig hohen Energiedichte (siehe • 4.5). Schwere Schwarze Löcher bestehen aus Coloronen und Photonen in den neun Dimensionen des physikalischen Raumes.

• 15 Erweiterung mit Ladungen höherer Symmetrie

Analog dem Modell der 3-Symmetrie ist eine Erweiterung der Symmetrien und damit weiterer Ladungen denkbar. Aus mathematischen Gründen (parallel zu den Oktonen/Oktalzahlen) wäre eine Teilung in sieben Teile zu untersuchen angebracht. Es gäbe dann sieben Ladungen, die zusammen die effektive Ladung Null ergeben, und sieben Antiladungen. Die Pendants zu den Quarks hätten dann 1/7 e[±], 2/7 e^{± ...} bis 6/7 e[±] elektrische Ladung, ergänzt mit einigen Ladungen der Regenbogenfarben. Ihre Ruhenergie wäre wesentlich größer. Zu den bereits bestehenden neun Dimensionen der 1- und 3-Symmetrie kämen 14 weitere hinzu (sieben Flächen), insgesamt 23 Dimensionen. Ein Kosmos mit solchen Teilchen hätte einen entsprechend höheren Anteil an Dunkler Materie (siehe • 16).

• 16 Dunkle Materie (Masse)

Die hier dargelegten Grundlagen erlauben eine naheliegende Hypothese zur sogenannten Dunklen Materie (siehe • 3.3.1). In einem höherdimensionalen Raum (mehr als drei Dimensionen) bringt die Dunkle Materie auf Grund ihrer Energie ihren Beitrag zum Energie-Impuls-Tensor und so zur Dynamik aller Materie. Es gibt allerdings keine Wechselwirkung mit elektrischer- und Farb-Ladung im Beobachterraum. Die im Beobachterraum solcherart wechselwirkende Materie hat eines gemeinsam: Die Torus-Hauptachsen liegen in ihm. Ist der Raum aller Ladungen jedoch (hier beispielsweise) 9-dimensional, können die Hauptachsen von Teilchen in den weiteren Dimensionen außerhalb des Photonenraumes liegen, die somit aus ihnen die Dunklen Teilchen bilden.

Man kann den Raum der "dunklen" Elektronen e^{-r} in R^{3r} in den Dimensionen D_0 , D_1 , D_2 mit den Dimensionen D_1 , D_m , D_n der gewöhnlichen Materie, mit $3 \le 1$, m, $n \le 8$, $1 \ne m \ne n$, in Verbindung bringen

$$D_{\alpha}' = d_{\alpha\beta}' * D_{\beta}, \ 0 \le \alpha \le 2 \text{ und } 3 \le \beta \le 8, \text{ (Summe "ber β)}.$$
 (1)

Diese Elektronen besitzen keine Dimension im Beobachterraum. Man sieht, dass es noch zwei weitere Arten "dunkler" Elektronen e-" und e-" gibt, die eine bzw. zwei Dimensionen im Beobachterraum besitzen:

für e-'', $\alpha = 2$, ist abweichend von oben $0 \le \beta \le 2$, und für e-''', $\alpha = 1$ und 2, ist abweichend $0 \le \beta \le 2$.

Wie groß ist der Anteil beispielsweise von Elektronen im Beobachterraum im Vergleich zu den Elektronen im gesamten 9-dimensionalen Raum? Im Beobachterraum gibt es für die Hauptachse drei (unabhängige) Möglichkeiten; für die Ladungsfläche jeweils nur eine (die übrigen beiden Dimensionen). In den weiteren sechs Dimensionen gibt es für die Lage der Hauptachse sechs (unabhängige) Möglichkeiten für jede der Formen e⁻′, e⁻′′und e⁻′′′. Dabei werden die verschiedenen möglichen Dimensionen der Ladungsflächen als eine Form der Elektronen angesehen. Das ergibt 3*6=18 Möglichkeiten "dunkler" Elektronen. Von den insgesamt 21 Möglichkeiten der Elektronen liegen 3/21, also 1/7 (≈ 14,3%) im Beobachterraum.

Der nach Messungen angegebene Anteil der normalen, sichtbaren Materie sind 15,46%. Wenn es ebenso viele sichtbare Elektronen sind, ist ihr Anteil im

Beobachterraum etwas höher als bei einer Gleichverteilung über den gesamten physikalischen Raum, d.h. der Anteil der sichtbaren Materie überwiegt. Dieser leicht größere Wert ist bedeutsam. Der dreidimensionale Beobachterraum bestimmt den Kosmos und schließt die Dunkle Materie ein (siehe jedoch • 20).

Welche außer der bereits bekannten Eigenschaft der Gravitation hat die Dunkle Materie noch? Da die Hauptachsen der – einfachen – dunklen Teilchen die Richtung ihrer Impulse haben, bewegen sie sich "individuell" nicht im Beobachterraum. "Dunkle Photonen", "Dunkle Coloronen" und die "Dunklen" Leptonen, sind in abgeschlossenen Gebieten Dunkler Materie gefangen. Die Bereiche (Dimensionen) der Dunklen Materie, die im Beobachterraum liegen, bewegen sich darin aufgrund ihrer Energie gemäß der Allgemeinen Relativitätstheorie. Konglomerate dunkler Teilchen – die es sicherlich gibt – können sich auch im Beobachterraum bewegen. Sie haben zwar einen Spin, aber in der Regel keine gemeinsame Torusachse, die die Bewegungsrichtung angeben könnte. "Generell" bewegen sich alle Arten von Quanten aufgrund ihrer Energie gemäss der Allgemeinen Relativitätstheorie. Diese generelle Bewegung ist der Quantenbewegung p nach • 4.3 Gl. (8.2) überlagert.

Sehr spekulativ und daher besonders reizvoll könnte sein, dass es Lebewesen aus Dunkler Materie gibt. Elektrisch und mit Photonen können wir mit ihnen leider nicht kommunizieren. Sie könnten wie "Geister" ungesehen neben uns aufblitzen. Lediglich ein äußerst empfindliches Gravimeter könnte sie "erahnen".

• 17 Wechselwirkung der sichtbaren mit Dunkler Materie

Da sich die einfachen, also nicht aus anderen zusammengesetzten, Elementarteilchen nur in Richtung ihrer Torusachse bewegen, bewegen sich die sichtbaren lokal nur im Beobachterraum und die dunklen lokal nur im Ergänzungsraum (siehe vorangegangener Abschnitt). Nehmen sie im jeweils anderen Raum ebenfalls Dimensionen ein, wie die Coloronen und ihre Neutrinos, die Gluonen und ihre Quarks und die dunklen Photonen (der II. und III. Kategorie) und ihre dunklen Positronen/Elektronen, können sie in diesen Dimensionen, je nach ihrer Geschwindigkeit, entsprechend lange an einer Stelle auftauchen. Zusammengesetzte Teilchen, die zwar einen Spin aber keine Torusachse besitzen, können sich in allen neun Dimensionen des physikalischen Raumes bewegen. Diese Eigenschaften der Teilchen sind wesentlich für die möglichen elastischen und inelestischen Stöße miteinander. Ihre Räume müssen deshalb in ihrem Einbettungsraum gemeinsame Dimensionen besitzen. also sich dort überschneiden können. Dabei sind die Streuguerschnitte zwischen Teilchen unterschiedlicher Familie am größten, da sich deren Räume nicht durchdringen.

Soweit die Vorstellungen, wie sie in "Grundbegriffe der Physik" dargelegt sind. Darauf aufbauend kann eine Wechselwirkung (WW) von SM mit DM abgeleitet werden. [

]

Da die Fermionen mit ihren Feldern, ihren Bosonen, von DM und SM wechselseitig nicht quantenmechanisch wechselwirken (Emission und Absorp-

tion), sondern ähnlich wie die Elektronen, Myonen und Tauonen mit den verschiedenartigen Neutrinos über mechanische Stöße (wenn sich ihre Räume nicht durchdringen können), ist der Übertrag von Energie gering, geringer als die kinetische Energie der Teilchen selbst. Bei Experimenten im Labor muss man also nach sonst nicht erklärbaren kleinen Änderungen der Energie suchen. Dies erschwert natürlich wegen des Untergrundrauschens einen Nachweis.

Wie wäre es beispielsweise mit höchst angeregtem schweren Wasserstoff, der bei geringster Zufuhr von (Stoß)-Energie durch DM ionisiert und bei einem schwachen angelegten E-Feld zu einem kleinen Strom-Impuls führt (Modifikation des Experimentes zur Messung der Ionisationsspannung von (schwerem) Wasserstoff)?

Eventuell könnten Experimente mit verfeinerten Blasenkammern gelingen, woran ja bereits gearbeitet wird. [Für einige Hinweise zu Experimenten und experimentellen Möglichkeiten danke ich Herrn Prof. *Rafael Lang* (1979).]

• 18 Eine Bemerkung zum Quantenzustand eines Teilchens

Abschließend muss erwähnt werden, dass hier "reine" Zustände, also freie Teilchen betrachtet wurden. Wie aus der Quantenmechanik bekannt, kann sich ein Teilchen in allen möglichen Zuständen befinden. Es gibt zwei Auffassungen: Erst durch eine Wechselwirkung (einem von einer Reihe möglicher Prozesse) wird ein bestimmter Zustand hervorgerufen oder jedes Teilchen befindet sich in einem bestimmten Zustand (allerdings mit Unschärfen) und nur das Teilchen unterliegt einer bestimmten Wechselwirkung, das sich in dem dazu erforderlichen Zustand befindet (das weicht von der Vorstellung "zusammenbrechender" Wellenfunktionen ab).

• 19 Relativitätstheorie und Elementarteilchen

Das Dilemma der Relativitätstheorien ist, dass Elementarteilchen als punktförmige Objekte behandelt werden. Bereits der greise Max Planck hat jedoch abgeleitet, dass Elementarteilchen nicht punktförmig sein können (siehe im Nachtrag). Diese Idealisierung punktförmiger Elementarteilchen ist möglich, soweit deren Größe keine Rolle spielt. Das ist bestimmt nicht immer der Fall.

Die Lösung des Problems ist eigentlich ganz einfach: Innerhalb einfacher, also nicht aus anderen zusammengesetzten, Teilchen, sind die Relativitätstheorien nicht anwendbar! Man muss den Raum- und Zeitbegriff soweit modifizieren, insofern jedes einfache Elementarteilchen seine eigene Raum-Zeit besitzt (siehe • 3.3 und • 3.4). Die Ladung eines einfachen Elementar-Teilchens befindet sich im gesamten Teilchen, bildet eine Einheit. Im Teilchen selbst findet keine Wechselwirkung der Ladung statt und auch keine Signal-übermittlung. Dies entzieht der Speziellen Relativitätstheorie (SRT) und folglich der Allgemeinen Relativitätstheorie (ART) die Grundlage. Im Übergang zur Newtonschen Physik wird aus der Ruhenergie die Ruhmasse (und abhängig vom Bezugssystem eine dynamische Masse) auf Grund des Korrespondenzprinzips. Aufgrund seiner Energie unterliegt das Teilchen der

Gravitation – als Ganzes. Die Gravitation wirkt nicht unmittelbar auf die Raum-Zeit des Teilchens selbst. Lediglich auf das mit ihm im Zusammenhang stehende Feld, genauer auf die Bewegung der Wechselwirkungsteilchen (Bosonen). Befindet sich ein Teilchen, auf einen Punkt reduziert gedacht, auf einer im Einbettungsraum singulären Fläche (oder Linie oder Punkt), so ist sein Raum davon "unberührt" und die Wechselwirkungsteilchen, die ebenfalls ihre eigene Raum-Zeit besitzen, bewegen sich jenseits der singulären Fläche (siehe auch Anhang I).

Interessant wird es, wenn auf die singuläre Fläche eines Schwarzen Loches Materie zuströmt. Wie verschieden die Raum-Zeit dieser Materie eines nahen (mitbewegten) und die eines weit entfernten Beobachters sind, kann an anderer Stelle nachgelesen werden (z.B. bei Wikipedia, besser der englische Beitrag). Insbesondere bei rotierenden Schwarzen Löchern, bei denen die einströmende Materie Akkretionsscheiben bildet, "staut" sie sich wegen ihres Drehimpulses auf und erreicht höchste Dichte. Die Räume der Teilchen sind dabei unmittelbar benachbart und bilden ein Elektron-Photon-Quark-Gluon-Plasma. Es enthält neben den Photonen auch Neutrinos. Die Photonen können das Plasma wegen ihrer minimalen freien Weglänge darin nur zum geringen Teil verlassen, eventuell die Neutrinos. Die Neutrinos verschwinden größtenteils im Schwarzen Loch, doch ein Anteil entweicht in den umgebenden Raum. Verlassen werden dieses Gebiet vor allem die reaktionsschwachen höchstenergetischen Coloronen.

Es ist möglich anzunehmen, dass sich die Räume der Teilchen bei einer Mindestdichte "auflösen". Dann spalten sich – hypothetisch – z.B. die einzelnen Ladungs-Bestandteile der Quarks – die der elektrischen und die der Farbladungen – auf, es entstehen Subteilchen. Das heißt aber, der Physikalische Raum mit seinen neun Dimensionen ist nicht in einen Beobachterraum und den Zusatzdimensionen aufgespaltet und folglich gibt es keinen Unterschied der verschiedenen Ladungen, sondern nur eine einzige Eig. Höchste Energien sollten bei der Verschmelzung zweier Schwarzer Löcher, neben Gravitationswellen im Einbettungsraum, entstehen.

• 20 Zur Geometrie von Elementarteilchen

• 20.1 Darstellung der Struktur einfacher Teilchen

Im Abschnitt zum Spin und der Helizität (• 3.3.1) wurde der Torus als grundlegendes geometrische Objekt für Elementarteilchen gefunden. Dessen Torsion und die Anzahl seiner Schleifen ergibt dessen Helizität. Alle Bereiche des Teilchens c_i , $i \neq 0$, z.B. die sog. Farbladungen, haben bis auf die Torusachse ihren Raum in den Zusatzdimensionen. Dabei befindet sich der Torus in einer Ladungsfläche in den Zusatzdimensionen, so dass $\frac{1}{3}$ des Volumens einer Eig/Ladung c_i entsteht und sich in den beiden zugehörigen Dimensionen befindet. Lediglich c_0 , die elektrischen Ladungen, können aus ein, zwei oder drei Einheiten – dem des Elektrons/Positrons – bestehen.

Wie entstehen überhaupt die drei Farbladungen mit ihren Anti- oder/und Gegenladungen? Ursächlich ist die *Umwandlung* eines Photons, seines dreidimensionalen Raumes in ein Teilchen mit sieben Dimensionen, wobei nur die Dimension der Torusachse im ursprünglichen Photonen-Raum bleibt. Der Torus des Photons expandiert aus zwei Dimensionen senkrecht zu dessen Hauptachse in die anderen sechs Dimensionen des physikalischen Raumes. Zwei Dimensionen davon ergeben jeweils eine Fläche einer Farbladung, gemeinsam mit der Dimension der Hauptachse den Raum einer Farb-Ladung. Das Photon wird zu einem Coloron welches in alle drei "Farb"-Ladungen "aufgebläht" ist. So etwas ist offenbar nur bei Quanten/Teilchen ohne Ruhenergie möglich. Denn ihre Energie ändert sich dabei nicht; sie ergibt sich nur aus den Schwingungen des Torus.

Der mathematische Zusammenhang zwischen der geometrischen Struktur und den Gruppeneigenschaften der Ladungen ist momentan nicht gefunden.

Die anderen Bosonen mit gemischten Ladungen, die Gluonen, ergeben sich aus der Aufspaltung des α-Quasi Bosons (• 8.4), einer kurzzeitigen Verbindung eines Photons und eines Colorons, gleicher Helizität. Nach den hier dargelegten Grundlagen müssen sie eine nichtverschwindende Ruhenergie besitzen. Die dadurch nicht mögliche Eichtransformation, aus der eine Ladungserhaltung folgen würde, gibt es somit nicht. Die Erhaltung der Farbladungen folgt aus der Ruhenergie Null der Coloronen.

• 20.2 Das Pauliprinzip – geometrische Deutung

Gleichartige Quanten/Teilchen sind nicht unterscheidbar. Sie können jedoch nicht zur selben Zeit am selben Ort (Raumzeitpunkt) existieren, besagt das Pauli-Prinzip (WIKIPEDIA). Verschiedenartige Quantenzahlen werden eingeführt, um verschiedenartige Zustände eines Quants zu charakterisieren. Z.B. die Spinquantenzahl und die Drehimpulsquantenzahl für Elektronen in einer Atomhülle. In einem System von gleichartigen Teilchen (z.B. Elektronen in einer Atomhülle) müssen sich diese in ihren Quantenzahlen unterscheiden. Verschiedenartige Teilchen hingegen können in einem Raumzeitpunkt existieren. Der Grund hierfür sind deren verschiedenen Geometrien oder geometrischen Eigenschaften.

Die Ausdehnung eines Quants ist durch dessen Comptonlänge $l_C = \hbar c/E_0$ charakterisiert. Identische Teilchen müssen einen Abstand von mehr als $2l_C$ haben, sie können sich nicht durchdringen! Anders verhält es sich bei nicht identischen Teilchen. Besonders deutlich zeigt sich dies bei einem Elektron und einem Neutrino/Antineutrino, die sich in verschiedenen Dimensionen des physikalischen Raumes befinden. Ein Elektron kann ungehindert ein (wesentlich grösseres!) Neutrino durchdringen. Teilchen und Antiteilchen können sich "berühren", da sie sich in unterschiedlichen Halbräumen befinden.

Texte zu den Abbildungen

1. Das Photon, Helizität ±1

Bild 1a: Darstellung eines Photons als Toroid mit der Torsion -1. Die virtuellen elektrischen Ladungen e⁺ und e⁻ in beiden Halbräumen sind rot bzw. blau markiert. Der Impuls liegt in Richtung der Achse.

Bild 1b: Im Raum des Beobachters erscheint das Photon als verschwommenes Objekt.

Bild 2: Zur besseren Erkennbarkeit sind die virtuellen elektrischen Ladungen als zwei getrennte, sich einmal umschlingende Tori dargestellt.

Bild 3: Darstellung der Schwingung des Photons (durch getrennte Tori dargestellt). Die Ladungen sind je nach Schwingungsphase unterschiedlich verteilt.

Bild 4: In einem elektrischen Feld wird das Photon "langgezogen", außerdem ist hier der Schwingungszustand bei weit getrennten Ladungen dargestellt, wie bei Bild 3 rechts, was durch die Torsion weniger gut zu erkennen ist.

Bei den anderen Bosonen befinden sich die beiden Halbräume in mehreren (höheren) Dimensionen der physikalischen Räume.

2. Fermionen, Helizität ±2

Die Fermionen mit der Helizität ±2 können nicht durch einen einfachen Torus dargestellt werden.

2.1. Elektronen

Im Bild oben wird durch einen Torus ein Möbiussches Band gelegt, um die Helizität von 2 zu veranschaulichen (unterstützt durch Einfärbungen). Mit einem Schnitt entlang des Möbiusschen Bandes und Umformung des Raumes von halbkreisförmigen in kreisförmigen Querschnitt erhält man das Modell eines Elektrons, wie in den Bildern darunter dargestellt. Analog wie beim Photon erscheint das Elektron im Beobachterraum als verschwommenes Objekt mit kaum erkennbarer Struktur (unten, rechts). Nächste Seite →

Der Torus hat hier ebenfalls die Torsion 1 und ist zur besseren Erkennbarkeit mit einem Zwischenraum dargestellt. Die Einfärbung gibt die Torsion des zweischleifigen Torus an. Die Orientierung des Drehwinkels ist rechts (positiver Drehsinn), die Schleife ist ebenfalls rechts gelegt, um den Halbtorus gewissermaßen zu einem Volltorus zusammenlegen zu können. Man muss zweimal um die Achse herumfahren, um wieder an die Ausgangsstelle zu gelangen, genauer gesagt an die Stelle mit gleicher Phase des inneren Drehwinkels des Torus. Die Helizität ist deshalb +2.

Im unteren Teil der Abbildung ist die Transformationen der Helizität des Elektrons mit gestreifter Markierung veranschaulicht:

Im oberen Bild ist ein Elektron mit der Helizität +2 dargestellt. Im Bild darunter wurde eine Spiegelung am Koordinatenursprung vorgenommen, eine Paritätstransformation, und ganz unten wurde das Vorzeichen der Helizität zu −2 getauscht. Man kann erkennen, dass eine P-Transformation einer Vertauschung der Helizität entspricht. [■]

2.2 Neutrinos und Quarks

Die drei Farbladungen eines Neutrinos rot grün und blau werden wie das Elektron durch einen zweischleifigen Torus dargestellt, jedoch in sieben Dimensionen, davon nur die Hauptachse im Beobachterraum. In der Abbildung (oben) sind sie in den dreidimensionalen Raum des Beobachters projiziert.

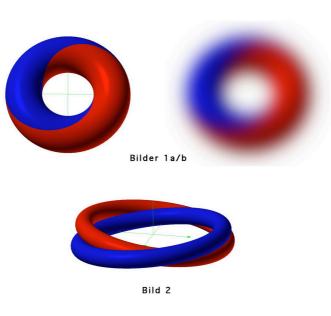
Die Abbildung kann ebenso zur Veranschaulichung eines d-Quarks dienen, wenn man eine Farbe der elektrischen 1/3-Ladung zuordnet, die beiden Farbladungen den beiden anderen gefärbten Doppeltori.

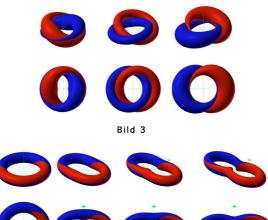
In der Abbildung darunter ist ein zweischleifiger Torus schematisch dargestellt, der zwei verschiedene Ladungen in einem Halbraum enthält.

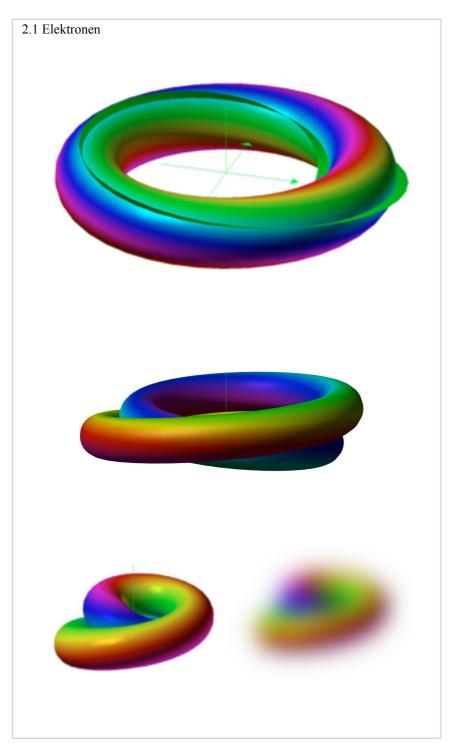
3. Exotische und erweiterte Helizität

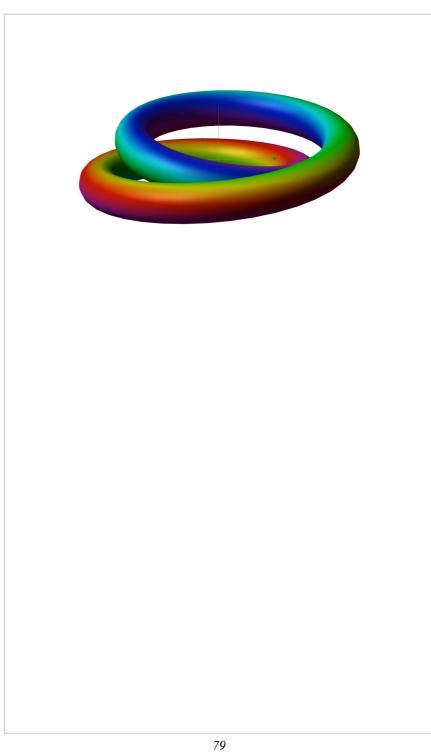
Die obere Abbildung zeigt einen Torus der Torsion –1 mit drei Schleifen, also der Helizität –3. Diese Teilchen gibt es in der uns bekannten Natur offenbar nicht. Es würde zu einem von drei Sub-Elektronen gehören, wenn der "Schlauch" wiederum aus einem Doppeltorus bestehen würde.

In der Mitte links ein Torus mit Torsion –2 und zwei Schleifen, rechts mit Torsion –3.

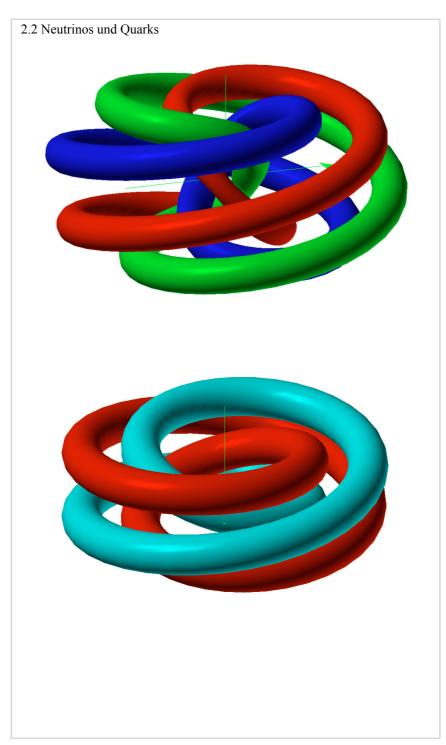

Unten ein Torus mit Torsion 2 und zwei Schleifen, wie man es bei einem mit 2 erweitertem Photon hätte. Die Helizität wäre $\mathcal{G} = 2/2$ und somit Spin $\hat{s} = \pm \hbar/\mathcal{G}$ = \hbar . Eine erweiterte Helizität ändert nicht den Spin!

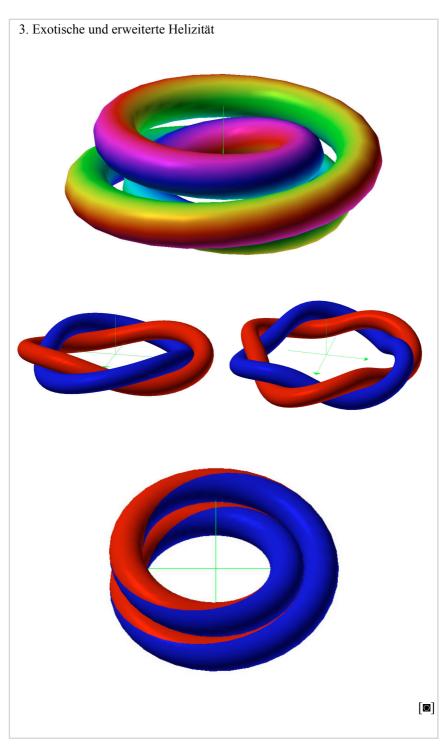



Die Grafiken wurden mit Hilfe von Graphing Calculator® erstellt.


Abbildungen

1. Das Photon





• 21 Die Entstehung der Welt aus dem Pandynato

Unter Welt ist der uns direkt und indirekt der Beobachtung zugängliche Teil des Kosmos zu verstehen.

Doch was ist der Ausgang des (oder eines) Kosmos, woraus entsteht der Kosmos? Aus dem "Nichts" wohl nicht – ein Nichts ist absolut. Der "Nullpunkt" eines Kosmos, als es weder Materie, noch Raum und Zeit gab? Dieser Zustand wird hier Πανδυνατο (Pandynato, siehe • 5) genannt. Von einem "Nichts" unterscheidet sich das Pandynato, dass es die Möglichkeit beinhaltet, alle Wesenheiten und Merkmale der Materie hervorbringen zu können, schlussendlich einen Kosmos.

Dieser Zustand ist vom Nullpunkt der kosmologischen Modelle nach der Relativitätstheorie von Albert Einstein zu unterscheiden, in der bereits Materie in Raum und Zeit existiert, nach deren Ursprung im Allgemeinen aber nicht gefragt wird!

In unserer Vorstellung kann man davon ausgehen, dass im Pandynato durch eine **Fluktuation** das einfachste aller Elementarteilchen in Form eines Paares von Photonen (siehe • 6) und seines Antiteilchens, einem Antiphoton, entsteht. Die Summe ihrer physikalischen Größen sind wegen ihrer Erhaltung jeweils Null (siehe • 6.1), also ihre Energie, ihre Impulse und ihre Spins sind entgegengesetzt. Aber ihr Raum, ihre Zeit und Geometrie, insbesondere ihre Helizität, sind gleich. (In der Theorie heutzutage spiegelt man die Zeit, weil man die Energie des Antiteilchens positiv behalten möchte, dafür aber eine Zeitumkehr erhält – die Antiteilchen "laufen" rückwärts, s. Fig. 3c in •12).

Ein Photon ist ein dreidimensionales, zudem unscharfes, Objekt. Ein Toroid mit einer Hauptachse, die ebenfalls die Bewegungs-, also Impulsrichtung vorgibt. Der Torus besteht aus zwei Halbräumen, die um eine Drehung verdrillt sind. Jeder Halbraum enthält die virtuelle elektrische Ladung bzw. Gegenladung, die jedoch schwingen, je nach Art des Photons in unterschiedlicher Weise. Dabei liegt eine ganz besondere Eigenschaft unter den einfachen Elementarteilchen vor: Teilchen und Antiteilchen, definiert als Austausch von Ladung und Antiladung, ist identisch mit einer halben Umdrehung um die Hauptachse. Photon und Antiphoton können sich nicht gegenseitig vernichten, lediglich ihre Auswirkungen können sich aufheben. Beispielsweise ihre überlagerten Lichtpunkte auf einem Bildschirm können verschwinden – klassisch sagte man, dass sie sich auslöschen.

Durch eine Paarerzeugung sind also auch ein Raum und eine Zeit entstanden, beide Dimensionen senkrecht zur Hauptachse sind letztlich endlos ausgedehnt, aber mit endlichem Volumen. Es gibt noch eine Besonderheit: Der Raum besitzt entlang des Torus-Ringes eine vollständige Drehung, eine Torsion. Damit haben die Photonen einen ganzzahligen Spin und unterliegen nicht dem Pauli-Verbot, können demzufolge identische Zustandsfunktionen haben. Mit anderen Worten: im Raum eines Photons kann sich ein zweites Photon befinden; sogar aus einer Fluktuation kann sich ein weiteres Photonenpaar bilden.

In Richtung der Impulse p=E/c eines Photonen-Paares, die entgegengesetzt gleich und in Richtung der Torus-Hauptachsen liegen, werden zwei aneinander liegende Halbräume gebildet.

Wenn weitere Photonenpaare entstehen gibt es erst einmal drei verschiedene Möglichkeiten:

- 1. Die neu entstandenen Photonenpaare liegen vollständig mit ihren drei Dimensionen in dem bereits existierenden ersten Photonenraum, ihre Hauptachsen sind beliebig verteilt (s.o.).
- 2. Die neu entstandenen Photonenpaare liegen mit ihrer Hauptachse in dem bereits existierenden ersten Photonenraum, ihre Hauptachsen sind beliebig verteilt, die beiden anderen Dimensionen liegen mit beiden Dimensionen nicht im Raum des ersten Photonenpaares, sondern bilden folglich zwei weitere Dimensionen, hier Zusatzdimensionen genannt.

Auf diese Weise können paarweise weitere Zusatzdimensionen entstehen.

3. Die in den Zusatzdimensionen aus Fluktuationen gebildeten Photonenpaare haben keine Hauptachsen im ursprünglichen Photonenraum. Liegen die Nebenachsen beide in den Zusatzdimensionen, ist ein weiterer Raum entstanden.

Dies bedeutet im Fall 1.:

Ein Kosmos mit beliebig vielen Photonen kann sich bilden – ein Lichtkosmos.

Im Fall 2.:

Haben sich auf diese Weise drei paar Dimensionen in den Zusatzdimensionen gebildet, kann sich nun ein mathematisch möglicher Torus mit der Hauptachse in sieben Dimensionen bilden (der parallelisierbar ist, siehe • 3.3 Teilchen und Geometrie), der mit der inneren 7. "Volumen"-Dimension einen für ein Boson mögliches Quant bilden kann. Eine bereits vorhandene neunte Dimension im Photonenraum ermöglicht die "Aufspaltung" des Colorons Zeta ζ (s. • 7.3 Bosonen) in die beiden Halbräume in zwei gegensätzlich geladene Fermionen, jeweils mit der Helizität von 2, analog der Aufspaltung eines Photons, existierend in drei Dimensionen, in ein Elektron und ein Positron.

Im Fall 3.:

Wenn die Hauptachse nicht im Photonenraum liegt, aber in einer der Zusatzdimensionen, ist ein "dunkles" Photon entstanden. Dunkle Photonen bilden die Grundlage der sogenannten Dunklen Materie. Da ihre Hauptachsen nicht im Photonenraum liegen, bewegen sich einfache Teilchen (Quanten) nicht in diesem Raum und können nicht mit dessen Quanten in Wechselwirkung treten. Die Hauptachse eines "Dunklen" Photons liegt in den Zusatzdimensionen! Die beiden Nebenachsen liegen beliebig in den "restlichen" acht Dimensionen des physikalischen Raumes.

Es ist auf Grund extrem schwacher Wechselwirkung, verursacht durch Asymmetrien der Schwingungen der Ladungen des Photons und des Colorons, eine extrem kurzzeitige Verbindung möglich (früher sprach man von Resonanzen). Beide Quanten müssen die selbe Hauptachse besitzen, sind quasi auf einer Achse übereinander angeordnet; mit jeweils gleicher Helizität, ihr

Gesamtspin ist demzufolge 0.

Gemeinsam besitzen sie neun Dimensionen – jede der vier Ladung zwei, plus die Dimension der Hauptachse. Da eine weitere, also zehnte, Dimension nicht vorhanden ist, ist eine gemeinsame Aufspaltung in die beiden Halbräume positiv und negativ nicht möglich. Es gibt also keine Leptonen mit jeweils der Helizität 1 (oder -1) mit gegensätzlichem Spin ± 1 , mit einer elektrischen (3c₀) und den drei Farbladungen.

Dieses Resonanzteilchen ist als α-Quasi-Boson in • 8.4 (S. 38) eingeführt worden. Da es alle Ladungen und ihre Gegenladungen enthält, kann es als Keimzelle aller untergeordneten Wechselwirkungsteilchen fungieren, es ist ein einzigartiges Universalteilchen! (Die weiterhin existierenden Teilchenfamilien höherer Familien werden wegen der besseren Verständlichkeit hier nicht beachtet – die Erweiterungen hierfür sind entsprechend einfach zu erhalten).

Auf der Suche nach dem sogenannten Higgs-Boson wurde im Jahr 2012 ein Boson mit der nicht erwarteten relativ niedrigen Ruhenergie von rund 125 GeV und der mittleren Lebensdauer von rund 10^{-22} s detektiert. Hierbei könnte es sich um unser α -Quasi-Boson handeln. Aus der Theorie des Higgs-Feldes, eine Art 2.0 des früher diskutierten Äthers, wurde allerdings ein mehr als doppelt so großer Wert des Higgs-Bosons berechnet.

Hat ein Elementarteilchen eine Ruhenergie, so erklärt sich seine Ruhmasse aus dem Vergleich mit der Newtonschen Physik, also aus dem Korrespondenzprinzip.

Das α -Quasi-Boson ist kurzlebig und kann wieder in die beiden Konstituenten zerfallen oder in zwei andere Bosonen, allerdings mit einer Ruhenergie. Sie stellen sich als die beiden Typen von Gluonen $\delta_k \equiv B^{00i}_{00i}(2c_0^+,c_k^+,2c_0^-,c_k^-)$ und $\epsilon_{(k)} \equiv B^{0ij}_{0ij}(c_0^+,c_i^+,c_j^+,c_0^-,c_i^-,c_j^-)$, die ebenfalls eine Ruhenergie besitzen, heraus. Wegen ihrer Ruhenergie haben sie nicht die Grenzgeschwindigkeit c, können also einen Ruhepunkt haben. Die oberen drei Indices stellen die beiden elektrischen Drittelladungen dar und eine Farbladung, die unteren die Gegenladungen. Zur Verdeutlichung sind diese Bestandteile noch einmal in Klammern dargestellt. Der andere Typ des Gluons steht für jeweils eine elektrische Ladung oben und die Gegenladung unten, als auch jeweils zwei Farbladungen oben und ihre Gegenladungen unten.

Die drei indices i, j, k können die Werte 1, 2, 3 annehmen, aber $i \neq j \neq k$. Die drei Ladungen c_1^* ergeben entsprechend ihrer Eigenschaften zusammen $c_1+c_2+c_3=0$ oder $c_1^-+c_2^-+c_3^-=0$, aber auch z.B. $c_1+c_2^--c_3^-=c_3^-=\overline{c_3}$, ebenso für die Gegenladungen. Mit anderen Worten: zwei Farbladungen erscheinen nach außen gleich ihrer negativen Gegenladung. (s. • 7 Die Gemeinsame Grundlage der Wechselwirkungen, plus sämtliche Unterabschnitte).

Auf Grund der Existenz des α -Quasi-Bosons mit allen existierenden Formen von Ladungen im 9-dimensionalen Raum und der möglichen Zerfälle in die vier grundlegenden Bosonen γ , ζ , und δ_k , $\epsilon_{(k)}$, stellt es die Basis zur Bildung des Kosmos dar, wenn es nur in genügend großer Anzahl gebildet wurde und vermutlich fortgesetzt gebildet werden.

Das Photon γ und das Coloron ζ können in die Leptonen Elektron und Positron und die mit geringer Ruhenergie behafteten Neutrinos und Antineutrinos aufspalten (siehe • 8).

Da die Gluonen eine Ruhenergie besitzen, habe sie neben einer Geschwindigkeit unter c eine endliche Lebensdauer und demzufolge eine endliche Reichweite, die etwa doppelt so groß wie der Ladungsradius oder die Compton-Länge des Protons ist. Als Bosonen mit einer oder zwei Farbladungen unterliegen sie der Farb- bzw. der starken Ladung, was zu ihren komplexeren Wechselwirkungen mit mehreren anderen ihrer Bosonen führt.

Die Aufspaltung der Gluonen ergeben die beiden Arten u_i und d_i von Quarks und deren Antiquarks \overline{u}_i und \overline{d}_i , aus denen sie virtuell bestehen.

$$\delta_i(u_i,\overline{u}_i) \to u_i + \overline{u}_i, \text{ und } \epsilon_{\scriptscriptstyle (i)}(d_i,\overline{d}_i) \to d_i + \overline{d}_i,$$

die ihrerseits die Ladungen (angelehnt an die gebräuchliche Bezeichnung)

$$u_i$$
: $(2c_0,c_i)$, mit $\{u_i\}$: ${}^2\!/_3\{e^+\}$ + $\{c_i\}$ und

$$\overline{\mathbf{d}}_{i}: (\mathbf{c}_{0}^{+}, \mathbf{c}_{j}^{+}, \mathbf{c}_{k}^{+}), \text{ mit } \{\overline{\mathbf{d}}_{i}\} = \{\mathbf{c}_{0}^{+}, \mathbf{c}_{j}^{+}, \mathbf{c}_{k}^{+}\} = \frac{1}{3}\{\mathbf{e}^{+}\} + \{\mathbf{c}_{i}^{-}\}$$

haben (historisch werden die Rollen von \overline{d}_i aus dem oberen Halbraum und d_i aus dem unteren Halbraum vertauscht, so dass

$$d_i: (c_0^-, c_i^-, c_k^-), mit \{d_i\} = \{c_0^-, c_i^-, c_k^-\} = \frac{1}{3}\{e^-\} + \{c_i\}$$

eigentlich aus den Antiladungen besteht. In der üblichen Chromodynamik kennt man die Relationen $\{c_i^+, c_k^+\} = \{c_i^-\}$ und umgekehrt $\{c_i^-, c_k^-\} = \{c_i\}$ nicht.

Die geschweiften Klammern geben die effektive Ladung an. So besteht die Ladung eines Neutrinos v aus allen drei Farb-Ladungen $c_1+c_2+c_3$, die effektive und auch gemessene Ladung ist jedoch $\{c_1+c_2+c_3\}=0$.

Entsprechend der höheren Anzahl D der Raumdimensionen ist die Ruhenergie der Quarks größer als die der Positronen/Elektronen:

Positron & Elektron
$$\approx$$
 0,51 MeV (3D), $u \approx$ 2,4 MeV (5D), $d \approx$ 4,8 MeV (7D).

Bedeutungsvoll sind die Darstellungen der Protonen p und der Neutronen n in ihren Ladungen. Das Proton wird aus zwei u-Quarks und einem d-Quark gebildet, das Neutron aus einem u-Quark und zwei d-Quarks. Die Pfeile ↑ und ↓ geben beispielhaft die Richtung des Spins von +½ bzw. -½ an:

$$\begin{array}{l} p(u_1\uparrow,u_2\uparrow,d_3\downarrow):4c_0^+\uparrow+c_0^-\downarrow+(c_1^+\uparrow+c_1^-\downarrow)+(c_2^+\uparrow+c_2^-\downarrow),\\ n(d_1\downarrow,d_2\downarrow,u_3\uparrow):2c_0^-\downarrow+2c_0^+\uparrow+(c_1^-\downarrow+c_2^-\downarrow+c_3^-\downarrow)+(c_3^+\uparrow+c_3^-\downarrow). \end{array}$$

Betrachtet man die Unterschiede zu deren Antiteilchen \bar{p} und \bar{n} , so kann man erstaunt feststellen, dass sich p und \bar{p} lediglich durch ihre elektrische Ladungen in $3c_0$ =e und $3\bar{c}_0$ =e unterscheiden, jedoch nicht in den Farbladungen, die hier effektiv \bar{c}_3 und c_3 sind. n und \bar{n} unterscheiden sich nicht in den elektrischen Ladungen – sie sind schließlich elektrisch neutral, aber unterscheiden sich in der Summe der drei Farbladungen und der drei Gegenladungen (letztlich nur in der inneren Ladung eines Antineutrinos bzw. eines Neutrinos, die effektiv sogar 0 sind). Das Neutron ist instabil, wenn auch mit einer langen Halb-

wertszeit von etwa 880 s. Es zerfällt u.a. in ein Antineutrino, dessen Struktur es bereits enthält (• 11, Beziehungen 4.1 und 4.2):

$$n + G(u_i, \overline{u}_i) \Rightarrow p^+ + e^- + \overline{v}$$
 und $p^+ + G(d_i, \overline{d}_i) \Rightarrow n + e^+ + v$.

(In der gängigen Elementarteilchenphysik werden die Gluonen $G(u_i, \overline{u}_i)$ und $G(d_i, \overline{d}_i)$ negiert!)

Das Proton hingegen hat lediglich zwei Farbladungen mitsamt ihrer Antiladungen. Es ist somit (gemeinsam mit seinem angeregten Zustand Δ^+) das einzige Quarkkonglomerat, welches in sieben Dimensionen existiert. Alle anderen Baryonen existieren in neun Dimensionen. Somit stellt das Proton den Grundzustand aller Baryonen dar. Die Struktur seiner Ladungen (die nicht abgeschlossen sind) erlaubt keinen Zerfall in irgendwelche Teilchen, wodurch es stabil ist

Erst die Bildung der Konglomerate p und n führt zur Diffraktion in die positive Materie oder mit \overline{p} und \overline{n} in die negative Antimaterie. In eine Welt und eine Antiwelt. In je einem Planck-Punkt. Der Kosmos beinhaltet eine Vielzahl von Planck- und Antiplanckpunkten. Der Unterschied zwischen p und \overline{p} liegt nur in der elektrischen Ladung. Sie kann durch die Paarerzeugung von Elektron e⁻ und Positron e⁺ ausgeglichen werden, da hier die weitreichende Wechselwirkungen vorhanden sind. Hingegen kann der Unterschied zwischen n und \overline{n} nicht wirkungsvoll ausgeglichen werden, da zwischen Antineutrino \overline{v} und Neutrino v keine weitreichende, wirksame Wechselwirkung vorhanden ist.

Bei der Aufspaltung beider Arten von Gluonen in ein Quark-Antiquark-Paar zwischen einem Planck-Punkt und dem Planck-Gegenpunkt entfernen sich beide Quarks in beliebiger und entgegengesetzter Richtung. Ein Quark wird von einem Planckpunkt angezogen, wenn die Farbladungen im gleichen Halbraum liegen, folglich: u-Quarks gesellen sich zu u-Quarks anderer Farbladung, ebenfalls d-Quarks zu d-Quarks, anderer effektiver Farbladung in einem Planckpunkt. Im anderen Planckpunkt ebenso die entsprechenden Anti-Quarks.

Die beiden Baryonen p und n stellen zusammen mit den Elektronen/Positronen die Grundbestandteile eines stofflichen (also ruhenergiebasierten) Kosmos dar. Die Kopplung beider erschließt ihre Eigenschaften, z.B. bei

$$\begin{array}{l} p(u_1\uparrow,u_2\uparrow,d_3\downarrow) + n(d_1\downarrow,d_2\downarrow,u_3\uparrow) \,\,\rightarrow \\ 6c_0{}^+\uparrow + 3c_0{}^-\downarrow + (c_1{}^+\uparrow + c_2{}^+\uparrow c_3{}^+\uparrow) + 2(c_1{}^-\downarrow + c_2{}^-\downarrow c_3{}^-\downarrow) \equiv \\ 2e\uparrow + \overline{e}\downarrow + v\uparrow + 2\overline{v}\downarrow \equiv \alpha + \overline{\alpha} + e\uparrow + \overline{v}\downarrow, \end{array}$$

und für die Antiprotonen und Antineutronen mit umgekehrten Spin letztlich $\overline{p} + \overline{n} \rightarrow \alpha + \overline{\alpha} + \overline{e} \downarrow + \nu \uparrow$.

Die Kopplung eines Neutrons an ein Proton stabilisiert es, schützt es vor dem Zerfall. Mit einem weiteren p-n Paar, aber entgegengesetztem Spin bildet es ein besonders stabiles Konglomerat, welches Elemente einer häufig auftretenden sogenannten α -Strahlung ist (quasi einem Heliumkern, nicht zu verwechseln mit dem α -Pseudo-Boson).

Aus der Ladungsstruktur dreier sowohl p oder auch \overline{p} können besondere Bindungen erschlossen werden, ebenso bei der dreier n oder auch \overline{n} . Insbesondere trifft dies auf Atomkerne mit drei p-n oder \overline{p} - \overline{n} Kombinationen zu,

besonders ihre Paarung mit Bindungen mit entgegengesetztem Spin. Ein Blick auf ein Periodensystem der Elemente bestätigt dies, gerade im Hinblick auf die kosmische Häufigkeit.

Wie kann es sein, dass Atomkerne mit anderen Kombinationen von Baryonen stabil sein können? Die Reichweite der Gluonen übersteigen nicht die Comptonlänge der Protonen und der Neutronen, wirken also nicht über sie hinaus.

Da hat die Natur eine feinsinnige Lösung gefunden. Sie stellt Kopplungen von u-Quarks mit u-Antiquarks \overline{u} , oder sogar mit Anti-d-Quarks \overline{d} , zur Auswahl, sowie d mit \overline{d} und \overline{d} mit u-Quarks zur Verfügung, die sogenannten π -Mesonen in drei Varianten, π^0 , π^+ und π^- (siehe • 10 Farbneutrale Konglomerate aus zwei Quarks – die Mesonen). Diese mittelschweren Teilchen wurden als erste Teilchen in der Atomphysik im Jahre 1947 entdeckt, die die Baryonen δ_k , $\epsilon_{(k)}$, untereinander verbinden, die sogenannten Austauschteilchen. Sie wurden aber zwölf Jahre vorher von Hideki Yukawa zur Erklärung beobachteter Eigenschaften von Atomkernen postuliert (WIKIPEDIA). Auf Grund ihrer mittleren Zerfallszeiten von $8,4*10^{-17}$ s (π^0) bzw. $2,6*10^{-8}$ s (π^\pm) haben sie begrenzte Reichweiten der Protonen und Neutronen in den Atomkernen und bestimmen so die größte Ausdehnung von (stabilen) Atomkernen.

Wenn man sich die Struktur der Ladungen anschaut, ist offensichtlich, dass Atomkerne gemischt aus Baryonen und ihren Antibaryonen nicht stabil sein können. Größere Konglomerate aus Atomkernen bestehen also nur aus einer Art von Baryonen bzw. Antibaryonen. Sie zeichnen sich durch die Aussendung von Neutrinos oder Antineutrinos aus. Solche Konglomerate aus unterschiedlichen Arten von Barvonen müssen folglich einen gewissen Abstand zueinander haben. Sie müssen in einem größeren Raumbereich demzufolge eine "körnige" Struktur bilden – den sogenannten Planck-Punkten. Nicht aufgelöst in kleine Winkelbereiche ist der Kosmos ausgefüllt mit einer Unzahl von Neutrinos und Antineutrinos. Das sind jedoch nicht die Punkte aus den Photonen, die mit dem Planck-Satelliten registriert wurden; dort handelt es sich letztlich um geringe Temperaturunterschiede der Photonen-Strahlung. In den Planck-Punkten überwiegen je nach ihrer Zusammensetzung aus Baryonen oder Antibaryonen die Antineutrinos oder die Neutrinos. Gerät ein v[±] aus einem Planckpunkt in einen gegensätzlich Planckpunk, so annihiliert dieses "augenblicklich" mit dem gegensätzlichen v[∓] zu einem Coloron.

Die Planck-Punkte entstehen aus den ersten Reaktionen des Pandynato und dabei der Aussendung von Neutrinos. Photonen entstehen ebenfalls bei den ersten Reaktionen, werden aber quasi sofort von der Umgebung absorbiert. Erst nach einer gewissen Ausdehnung und der Fraktion (Zusammenballung) der stofflichen Materie und damit von "Zwischenräumen", können sich Photonen in ihnen – frei – ausbreiten. Die Darstellung der Punkte der Mikrowellenstrahlung stammt demzufolge aus einer fortgeschrittenen Phase des Kosmos, hingegen die Planck-Punkte der Neutrinos aus der "Geburtsphase". Die graphisch dargestellten Planck-Punkte bestehen erst aus nur wenigen Baryonen, die Anzahl der Baryonen nimmt immerfort bis zu einer quasi

unbegrenzten Zahl zu. Wenn bereits eine globale Zeit existieren würde, wäre sie ebenfalls quasi unbegrenzt, von $-\infty$ bis 0.

In der Kosmologie nach der Allgemeinen Relativitätstheorie wendet man den Trick an, diese Zeit auf einen Punkt schrumpfen zu lassen, einer Singularität, weil man in deren Rahmen keine Ahnung davon hat und auch nicht haben kann, was da vonstatten geht.

Das Ganze ist ein verdammt ausgeklügeltes Konstrukt eines Kosmos, dass man einige gedankliche Winkelzüge eines nicht mehr jungen Denkapparates benötigt, ihm auf die Spur zu kommen. Hoffentlich tut sich nicht noch eine Fallgrube auf, das Konstrukt zu Fall zu bringen.

Zur Bildung von Photonen-Paaren wurden anfangs drei Möglichkeiten gezeigt. Die dritte spielte bisher keine Rolle, dass nämlich die Hauptachse eines weiteren Paares, die nicht im gleichen (selben) Raum des ursprünglichen Photonenraumes Raumes liegen, sondern in einer der Zusatzdimensionen, die durch die Farbladungen festgelegt sind. Diese Photonenpaare, eventuell erweitert um weitere Dimensionen, können sich nicht in den drei ursprünglichen Dimensionen der Photonen bewegen, da deren Hauptachsen außerhalb liegen. Sie sind sozusagen nicht detektierbar und unsichtbar, man könnte sagen "dunkel". Da sogar drei zusätzliche Räume der Farbladungen für die Hauptachsen der "dunklen" Photonen vorhanden sind, gibt es drei verschiedene "dunkle" Photonen.

Mit den nun drei verschiedenen, zusätzlichen "dunklen" Coloronen werden sich drei mal sechs weitere Zusatzdimensionen bilden. Aus den nun drei verschiedenen α -quasi Bosonen können sich drei verschiedene Konglomerate bilden. Diese sind in ihrer Bewegungsrichtung nicht mehr an ihre Zusatzdimensionen gebunden, könnten sich demzufolge aber nicht im primordialen, uranfänglichen, Photonenraum bewegen. Soviel zur Dunklen Materie! (Siehe • 16 Dunkle Materie)

Ein Umstand muss noch geklärt werden. Die beiden verschiedenen Planck-Punkte enthalten einmal die Protonen mit positiver elektrischer Ladung, ein andermal die Antiprotonen mit negativer elektrischen Ladung. Sie würden sich also gegenseitig anziehen und letztlich auflösen. Dem ist jedoch vorgesorgt. In den beiden gegensätzlichen Planck-Punkten entstehen durch Fluktuationen in Paarerzeugungen aus den Photonen Elektron-Positron-Paare, nicht nur mit gegensätzlicher elektrischer Ladung, sondern auch mit gegensätzlicher Bewegungsrichtung. Im Mittel gelangen die entgegen geladenen Elektronen oder Positronen in den Planck-Punkt mit den elektrisch geladenen Protonen oder Antiprotonen in Verbindung. Damit wird jedem Proton ein Elektron zugeordnet, umgekehrt jedem Antiproton ein Positron, wodurch eine elektrische Neutralisierung der Planck-Punkte erfolg. Um die Proton-Neutron-Konglomerate, den Atomkernen, entsteht folglich eine Elektronen-Wolke, umgekehrt bei den Antiteilchen. Auf Grund der Helizität können sie sich nicht durchdringen und wegen ihrer Bewegung nicht in einem engen Raumbereich

existieren, sondern bilden einen ausgedehnten Raum, die Elektronenhülle. So beobachtet man bei einem Atom hauptsächlich seine Hülle.

Der Atomkern wird gleichsam sacht wie in einem Wattebausch eingebettet, ähnlich den Samenkörnern einer Pflanze auf dieser Fotografie:

Haben sich zwischen den Planck-Punkten Abstände gebildet, hat sich ein übergeordneter Raum gebildet – ein **globaler Einbettungsraum**. Die Anzahl der Dimensionen des Raumes aller Ladungen beträgt durch die Überschneidungen neun Dimensionen. Im Mittel aller sich in Bewegung befindender Planck-Punkte hat sich in ihm ein lokales Zentrum gebildet. Wenn die gesamte Energie in endloser Zeit über alle Grenzen gewachsen ist, muss auch der Einbettungsraum in all seinen Dimensionen über alle Grenzen gewachsen sein. Es ist ein unendlich ausgedehnten Kosmos.

Wenn die Anzahl der vorhandenen Teilchen unbegrenzt ist, muss die Dauer ihrer Entstehung endlos sein.

Die Abständen zwischen den Planck-Punkten ermöglicht die Bildung einer Metrik. Dies ist die wesentliche Voraussetzung zur **Gravitationstheorie**, wie sie Albert Einstein 1915 in der **Allgemeinen Relativitätstheorie** etabliert hat. Aus ihr kann ein kosmologisches Folgemodell abgeleitet werden, nämlich ein dynamischer Friedmann–Kosmos (1922).

Da die neun Dimensionen des Physikalischen Raumes gleichberechtigt sind, ist die übergeordnete Riemannsche Raum-Zeit zwangsläufig ebenfalls neundimensional. Falls jedoch die sieben "überstarken" Regenbogen-Farbladungen existieren, kämen noch einmal 14 Raumdimensionen hinzu (siehe • 15 Erweiterung mit Ladungen höherer Symmetrie). Dieser höherdimensionale

Kosmos expandiert analog dem klassischen Friedmann-Kosmos, allerdings mit modifiziertem Kopplungsfaktor (Gravitationskonstante) zwischen Materie und geometrischem Krümmungstensor und in der Folge mit anderem Skalenfaktor, also anderer Expansions/Kontraktionsgeschwindigkeit. Reduziert sich im weiteren Verlauf der Entwicklung des globalen Kosmos die Anzahl der Dimensionen, ändert sich formal das Expansionsverhalten. Der Kosmos expandiert/kontrahiert zunehmend schneller, und zwar ohne mythische **Dunkle Energie**.

In den vier dreidimensionalen Unterräumen bilden sich vier verschiedene Elementarteilchen- und stoffliche Systeme, die nicht über ihre Ladungen miteinander wechselwirken können, sondern nur über ihre Gravitation. In einer davon leben wir, die anderen sind drei Typen der **Dunklen Materie** (• 16). Unser globaler Raum und unsere globale Zeit, der **Beobachterraum**, bilden unsere Vorstellung von der materiellen Welt – der stofflichen mit Ruhenergie und der flüchtigen mit nur dynamischer Energie, wie den Photonen und Coloronen.

Ein wesentlicher Aspekt beim Anwachsen der Planck-Punkte wurde bisher übergangen. Bei der stetig wachsenden Anzahl der Bosonen, insbesondere der mit Ruhenergie ausgestatteten Gluonen und deren Spaltprodukte, wurde die Folge der zunehmenden Dichte nicht betrachtet. Die Quarks, aber auch die Elektronen/Positronen und Neutrinos/Antineutrinos, werden in ihre jeweils drei Subteilchen komprimiert. Ihre Helizität und folglich Spins werden ebenfalls in ½*½ = 1/6 gespalten. Bei der unveränderten Torsion von 1 sind jetzt sechs Schleifen vorhanden. Das bedeutet eine stark gewachsene Ruhenergie pro Subteilchen und eine ebenso stark gewachsene "Härte" oder Inkompressibilität und reduzierter Eigenzeit, aber dennoch extrem gesteigerter Dichte. Zwangsläufig reduziert sich das Ausmaß unter dem des Schwarzschildradius. In einer Supernova (SN) entsteht ein Schwarzes Loch. Gleichzeitig wird der äußere Bereich des Planck-Punktes weggeschleudert (es scheint sich um eine Untergruppe des Typs SN Ia CSM zu handeln, die nur bei Planck-Punkten entstehen).

Bei einer Supernova werden die äußeren Bereiche des Planck-Punktes mit hoher Geschwindigkeit in einem komplexen Prozess davon geschleudert. In den Stoßfronten werden letztlich die Bosonen und aus ihnen die Protonen und Neutronen und die Leptonen gebildet, die sich wiederum zu Sternen verdichten. Mit den aus den elektrischen und entstehenden magnetischen Feldern bildet sich eine Galaxie.

Auf diese Art entstehen aus den Planck-Punkten eine unüberschaubare Anzahl Schwarze Löcher mit ihren sie umgebenden Galaxien.

0

• 22 Nachfolge–Supernova
Bei einer stellaren Supernova – der Explosion eines "ausgebrannten" alten
Sternes – können Konglomerate von Photonen entstehen (s.• 8.5). Diese
könnten möglicherweise höhere Konglomerate bilden, deren Ruhenergie einen
großen Teil der Energie der SN beinhaltet.
Durch veränderliche Magnetfelder können hochenergetische Elektronen oder/
und Positronen (oder andere hochenergetische Quanten) dieses riesige
Photonenkonglomerat zum Zerfall bringen, was eine Nachfolge-SN
hervorruft. []

Anhang I [0]

Interpretation der Teilchenrelationen

Es wird ein einfaches Elementarteilchen in einem metrischen Einbettungsraum betrachtet. Die Unschärfen werden der Einfachheit halber weggelassen. Impuls \mathbf{p} und Energie E bilden eine Einheit, den Vierer-Impuls (\mathbf{p} ,E/c). Es werden die Länge $\Delta \mathbf{x}$ in Impulsrichtung und der Zeitabschnitt $\Delta \mathbf{t}$ der Eigenzeit ebenfalls zu einer Einheit ($\Delta \mathbf{x}$,c $\Delta \mathbf{t}$) zusammengeführt, der Raum-Zeit des Teilchens (analog der Koordinaten eines Einbettungsraumes).

Das Quadrat des Viererimpulses ist eine Lorentzinvariante $p_i p^i = p^2 - E^2/c^2 =$ inv. (Signatur: +,+,+,-). Die Invariante ergibt sich aus $\mathbf{p} = 0$, d.h. auch $E = E_0$, zu $-E_0^2/c^2$ (siehe z.B. Landafschitz, Bd. II, §9). Das ergibt die bekannte Gleichung

$$E^2 = E_0^2 + p^2 c^2. (1)$$

Das Skalarprodukt aus Viererimpuls und Raumzeit des Teilchens ist ebenfalls eine Lorentzinvariante, die offensichtlich die "innere" Wirkung eines Teilchens im Viererraum ist

$$\Delta S = \mathbf{p} \, \Delta \mathbf{x} - E \, \Delta t. \tag{2}$$

Wendet man die ersten beiden Grundgleichungen (• 4.3, (8.1), (8.2)) an, erhält man

$$\Delta S = 0, \tag{3}$$

die Raum-Zeit und der Viererimpuls eines einfachen Teilchens stehen senkrecht aufeinander. D.h. innerhalb eines einfachen Teilchens verschwindet die Wirkung; mit anderen Worten, gibt es keine Wechselwirkung.

Verknüpft man die beiden Gleichungen (1) und (2), indem man den Impuls oder die Energie eliminiert, erhält man

$$E_0^2 = E^2 (1 - c^2 \Delta t^2 / \Delta x^2) = p^2 c^2 (\Delta x^2 / c^2 \Delta t^2 - 1), \tag{4}$$

woraus wegen $E^2 \ge E_0^2 > 0$ folgt: $\Delta x > c\Delta t$ (für $E_0 = 0$ muss $\Delta x = c\Delta t$ sein, dabei ist E^2 beliebig). Das ist eine Bestätigung des Prinzips (siehe • 3.4, 2. Hauptsatz, S. 14), dass die im Raum x eines Teilchens enthaltene Eig/Ladung nicht mit sich selbst in Wechselwirkung stehen kann. Außerdem: die Ausdehnung in Impulsrichtung ist grösser als dort Ladungen eine Wechselwirkung in der "Lebenszeit" Δt erreichen könnten. Bei einem Teilchen mit verschwindender Ruhenergie $E_0 = 0$, das sich mit der Geschwindigkeit c bewegt, ist in Impulsrichtung ohnehin keine Wechselwirkung möglich (und somit auch senkrecht dazu).

Zur Klarstellung muss erwähnt werden, dass die Wirkung eines Körpers durch das Integral der Lagrangefunktion über den (vierdimensionalen) Abstand seiner vierdimensionalen Bewegungsbahn definiert ist.

Der Raum des Photons, in dem es keine Wechselwirkung – mit sich – gibt und folglich keine Grenzgeschwindigkeit einer Wechselwirkung, haben die Beziehungen der relativistischen Physik, z.B. die der Lorentztransformation, keinen Sinn. Dies ermöglicht offenbar die Konstruktion eines geometrischen Modells des Raumes eines Photons, hier eines gewöhnlichen, einschleifigen Torus, allerdings mit einer Torsion von ± 1 (in Einheiten des Vollwinkels 360° bzw. 2π).

In der Physik sind neben kontinuierlichen auch diskrete Transformationen von Objekten und der sie beschreibenden Gleichungen wichtig und interessant. Betrachtet werden die Raumspiegelung am Koordinaten-Nullpunkt, d.h. es wird $\mathbf{x}' \to -\mathbf{x}$ ersetzt; im R³ gleich bedeutend mit der Spiegelung einer (beliebigen, oft mit z bezeichneten) Achse und nachfolgender Drehung um diese Achse um 180°. Es ist die Paritätstransformation P. Die Spiegelung der Zeitachse $\mathbf{t}' \to \mathbf{t}$ ist die T-Transformation. Beide gemeinsam sind die PT-Transformation. Der Wechsel Teilchen-Antiteilchen ist erfahrungsgemäß mit einer Ladungskonjugation, d.h. dem Vorzeichenwechsel $\mathbf{q}' \to -\mathbf{q}$, verbunden und wird C-Transformation genannt. Nach bisheriger Erfahrung sind alle Gleichungen/Beziehungen, die Teilchen und Wechselwirkungen beschreiben, invariant gegenüber der CPT-Transformation.

Die Raumspiegelung führt beispielsweise zu (I steht hier für I_p)

P:
$$\Delta \mathbf{t}' = \Delta \mathbf{t}$$
, $\Delta \mathbf{x}' = -\Delta \mathbf{x}$, E'= E, $\mathbf{p}' = -\mathbf{p}$, $\mathbf{I}' = -\mathbf{I}$, $\mathbf{T}' = -\mathbf{T}$, $\mathbf{s}' = \mathbf{s}$, $\hat{\mathbf{s}}' = -\hat{\mathbf{s}}$; die Zeitspiegelung zu

T: $\Delta t' = -\Delta t$, $\Delta x' = \Delta x$, E' = E, p' = -p, I' = -I, T' = T, s' = s, $\hat{s}' = -\hat{s}$;

PT:
$$\Delta \mathbf{t}' = -\Delta \mathbf{t}$$
, $\Delta \mathbf{x}' = -\Delta \mathbf{x}$, $E' = E$, $\mathbf{p}' = \mathbf{p}$, $\mathbf{I}' = \mathbf{I}$, $T' = -T$, $\mathbf{s}' = \mathbf{s}$, $\hat{\mathbf{s}}' = \hat{\mathbf{s}}$; die Ladungskonjugation

C:
$$\Delta t' = \Delta t$$
, $\Delta x' = \Delta x$, $E' = E$, $p' = p$, $I' = I$, $T' = T$, $s' = s$, $\hat{s}' = \hat{s}$; und alle drei Transformationen

CPT:
$$\Delta t' = -\Delta t$$
, $\Delta x' = -\Delta x$, $E' = E$, $p' = p$, $I' = I$, $T' = -T$, $s' = s$, $\hat{s}' = \hat{s}$.

Bemerkenswert ist die Invarianz der Helizität ŝ gegenüber der PT-, der C-und folglich der CPT-Transformation; aber nicht einer P- oder T-Transformation allein

Die grundlegenden Beziehungen in einem Einbettungsraum sind gegenüber einer P-, einer CT- und folglich auch PCT-Transformation invariant

E*
$$\Delta t = \pm \hbar$$
,
 $\mathbf{p}^* \Delta \mathbf{x} = \pm \hbar$,
 $\hat{\mathbf{s}} = \mathbf{s}^* \mathbf{I}_s = \pm T/Z^* \hbar$,

wobei die Unschärfen nicht "vergessen" werden dürfen, die hier nicht aufgeschrieben sind.

Die zweifache Anwendung einer Transformation ergibt wieder den Ausgangszustand $P^2 = T^2 = C^2 = 1$. Daraus folgt, dass eine inverse Transformation gleich der Transformation ist: $P^{-1}=P$, $T^{-1}=T$ und $C^{-1}=C$. Daraus lassen sich andere Beziehungen ableiten; z.B. bei PCT=1 ist C=PT; der Übergang zu einem Antiteilchen ist mit einer Raum- und Zeitspiegelung verbunden.

Für das (einfache) Teilchen selbst, sozusagen seinem "Innerem", fehlen die Voraussetzungen der Relativitätstheorie(en); es gibt nur die Raum-Zeit des Teilchens, das zwar die Einführung eines Koordinatensystems in einem Einbettungsraum möglich macht, aber keine Lorentztransformation. Das Teilchen bildet – es ist ein Quant – eine Einheit. Sein Raum "endet" an dessen Grenzen, die zudem unscharf sind. Deshalb muss es in der Relativitätstheorie als Raum-Punkt behandelt werden. Da z.B. bei einem Elektron dessen Ladung in ihm selbst nicht miteinander wechselwirkt, befindet sie sich gewissermaßen

gleichzeitig und überall in seinem Raum. In der Schrödingerschen Wellenmechanik (Erwin Schrödinger, 1887 – 1961) kann aus der Wellenfunktion des Teilchens seine Messwahrscheinlichkeit (bei Einbettung in einen metrischen Raum) in einem bestimmten Bereich berechnet werden. Gibt es eine Messwahrscheinlichkeit jenseits eines Potentials, so kann es gewissermaßen gleichzeitig auf beiden Seiten beobachtet/gemessen werden; es "tunnelt" instantan. Davon nicht berührt ist die Möglichkeit, dass sich die Raum-Zeit zweier Teilchen überschneiden können. Es ist sogar so, dass für eine Wechselwirkung beider Teilchen eine Überschneidung des Raumes und der Zeit Voraussetzung ist. Die Wechselwirkung ist um so wahrscheinlicher, je größer die Überschneidung ist.

Davon unberührt ist die Verteilung der Eig/Ladung in der Raum-Zeit des Teilchens nicht homogen, insbesondere unterliegt sie Schwingungen. Diese schwingende Verteilung der Ladung und der Antiladung eines Photons ist der Grund, weshalb es in der klassischen Feldtheorie als elektromagnetische Welle erscheint.

In der klassischen Physik und auch noch in der Quantenmechanik spielt der Begriff der Messung eine zentrale Rolle. Zu einer Messung sind eine ganze Reihe von Voraussetzungen notwendig. Neben der Einführung von Maßstäben muss ein Messprozess festgelegt und ein Messgerät konstruiert und gebaut werden. Bei der Festlegung von Maßstäben werden von alters her metrische Größen verwendet, freilich mit Genauigkeitsgrenzen versehen, d.h. man setzt metrische Räume voraus. So werden für Zeit und Länge die Maßstäbe t_0 und l_0 eingeführt, so dass $\Delta t = T^*t_0$ und $\Delta x = L^*l_0$ sind, mit den reellen (eigentlich immer nur rationalen) Maß-Zahlen T und L (z.B. $\Delta t = 5$ s, T=5, s=Sekunde). Die Maßstäbe werden in einer positiven Raum-Zeit als positive Einheiten angesehen, in einer Negativen Raum-Zeit als negativ, die Maßzahlen können beide Vorzeichen haben.

Reelle Teilchen, die einer Wechselwirkung unterliegen, können über ihre Zeit Δt und ihrer Ausdehnung Δx_p hinaus existieren (was normalerweise der Fall ist). Dabei kann man Δt und Δx_p – mit begrenzter Periode – fortsetzen.

Da h als universelle Naturkonstante eindeutig vorgegeben ist, kann sie als positive Maßzahl angesehen werden. Das gemischte Vorzeichen \pm in den grundlegenden Relationen deutet bereits an, dass die Größen auf der linken Seite der Relationen nicht eindeutig sind. Man muss einen positiven Raum $\mathbf{x}>0$ von einem negativen $\mathbf{x}<0$ unterscheiden, und in beiden gibt es eine positive und eine negative, der positiven entgegengesetzte, Richtung. Analog gibt es einen positiven und einen negativen Impuls. Es gibt keinen Hinderungsgrund neben einer positiven Zeit $\mathbf{t}>0$ eine negative Zeit $\mathbf{t}<0$ zuzulassen (wohlgemerkt, es handelt sich hier nicht um die Raum-Zeit, in welcher sich ein Teilchen bewegt, sondern um die Raum-Zeit eines Teilchens). Ebenso gibt es neben der positiven Energie $\mathbf{E}>0$ die negative Energie $\mathbf{E}<0$. In der Vergangenheit wurden Versuche unternommen, negative Energie von Teilchen auszuschließen, da dies nicht der menschlichen Erfahrung aus der Makrowelt entspricht, z.B. durch Einführung einer ominösen Vakuumenergie, oder, anders

ausgedrückt, dem nach *Paul A. M. Dirac* (1902 – 1984) benannten Dirac-See, obwohl dies in der Theorie zu Problemen führt. Das Problem ist doch vielmehr und die Frage muss lauten: Weshalb wird in der Makrowelt (im Beobachterraum) keine negative Energie beobachtet? Zusammenhängend mit dem Problem, weshalb in der Natur (fast) nur eine Form der Teilchen beobachtet wird und nicht ebenso die Anti-Teilchen. Und: Weshalb laufen komplexe Prozesse in abgeschlossenen Systemen nur in einer Richtung der Zeit ab?

Wie oben allgemein dargelegt, ist bei E > 0 ebenso E > 0 und $E + \delta E > 0$, bei E < 0 ebenso E < 0 und $E + \delta E < 0$. Analoges gilt für den Impuls.

Der allgemeine Zusammenhang $E^2 = E_0^2 + p^{2*}c^2$ (1) ergibt gemäß einfacher Regeln der Mathematik zwei Lösungen bzw. Kurvenzweige E(p), eine für $E \ge E_0 > 0$ und die andere für $E \le E_0 < 0$.


Der Übergang eines Teilchens in einem Zustand mit E > 0 zu E < 0 oder umgekehrt ist also nicht möglich.

Ist für ein Teilchen mit $E_0 \neq 0$, beispielsweise einem Elektron, in einem Bezugssystem p=0, so kann es in diesem Bezugssystem im Falle $E_0>0$ nur ein Photon mit positiver Energie absorbieren oder ein Photon mit negativer Energie emittieren, da stets $|E| \geq E_0$ gilt ; im Falle $E_0<0$ ist es umgekehrt. Da es immer ein Bezugssystem mit p=0 gibt, kann demzufolge ein freies Elektron kein Photon mit E>0 emittieren (bei $E_{0Elektron}>0$ und $E_{Photon}>0$ und umgekehrt). Für den Prozess der Emission eines Photons ist noch (mindestens) ein weiteres Teilchen notwendig (halbklassisch auch das Feld eines Teilchens oder elektrischen Stromes \rightarrow Bremsstrahlung). Das kann auch ein Photon sein (was die Streuung eines Photons an einem Elektron bedeutet).

Wenn Teilchen nicht unbegrenzt ausgedehnt sind $(\mathbf{x}^*\mathbf{I} + \infty)$, $\mathbf{t} + \infty)$ besitzen sie endlichen, nicht verschwindenden Impuls und endliche, nicht verschwindende Energie (Teilchen mit Ruhenergie besitzen also stets eine endliche Zeit. Wegen dieses nicht verschwindenden Impulses müssen solche Teilchen in einem – nicht notwendig metrischen – Raum existieren; ihre Raum-Zeit muss in einer übergeordneten Raum-Zeit enthalten – eingebettet – sein. Ist hingegen ein Teilchen in allen Raumdimensionen unendlich ausgedehnt, so ist sein Impuls Null (und die Energie gleich der Ruhenergie), wie es bei der Urzeugung aus dem Pandynato sein mag.

Die einzigartige Eigenschaft des Photons, sich von seinem Antiteilchen lediglich durch eine Drehung zu unterscheiden, hat besondere Konsequenzen.

Nach dem Torusmodell des Photons unterscheidet es sich vom Antiphoton durch eine Drehung um die Hauptachse um 180°. Da die Grundgleichungen gegen (beliebige) Drehungen um diese Achse invariant sind, gelten sie für jedes Vorzeichen von h sowohl für das Photon als auch das Antiphoton. Jedes Vorzeichen von h ist von vorne herein gleichberechtigt. Demzufolge gibt es zwei Sorten von Photonen, solche mit positiver und andere mit negativer Raum-Zeit und Torsion, oder (äquivalent) mit positiver und negativer Energie, entgegengesetztem Impuls und entgegengesetzter Helizität.

Anhang II

Trägheit, Gravitationskonstante und Kosmologie

Im Rahmen der Newtonschen Physik wird die Frage nach der Ursache der Trägheit von Körpern gestellt. Wie kommt es, dass ein Körper einer Beschleunigung einen Widerstand entgegensetzt? Einer Beschleunigung gegenüber wem oder was? Die Antwort ist ein Kunstgriff: gegenüber einem Inertialsystem. Aber was bestimmt das Inertialsystem? Hierzu äußerte sich vermutlich zuerst *Ernst Mach* (1838 – 1916), mit der Überzeugung, dass sich die Bewegung eines Körpers auf alle Körper des Weltraumes bezieht, das Bezugssystem durch alle Körper bestimmt wird und alle Massen untereinander in Beziehung stehen.

Die Trägheit eines Körpers wird durch seine "träge" Masse ausgedrückt. Zur Beschleunigung eines Körpers ist eine Kraft notwendig, die im gleichen Maße zunehmen muss wie einerseits die Beschleunigung selbst und andererseits seiner trägen Masse (dem Trägheitswiderstand), also dem Produkt beider. Dieses Produkt wurde bereits von *Isaac Newton* (1643 – 1727) als Bewegungsgröße eingeführt und wird heutzutage als Impuls bezeichnet.

Neben der Trägheit gibt es in der Newtonschen Physik die wechselseitige Anziehung der Körper, die durch ihre "schweren" Massen beschrieben wird. Die Kraft dieser Anziehung wächst proportional mit den schweren Massen der Körper, also ihrem Produkt und nimmt nach *Christiaan Huygens* (1629 – 1695) und *Newton* umgekehrt mit dem Quadrat ihres Abstandes ab.

Um beide Formen der Kräfte miteinander in Beziehung setzen zu können, müssen zunächst beide Formen der Masse in Beziehung gebracht werden. In der Newtonschen Mechanik und Gravitationstheorie (NMG) wurden sie gleichgesetzt, in der Einsteinschen Allgemeinen Relativitätstheorie (ART) sind sie sogar identisch. In der NMG müssen die beiden Bestimmungsgrößen der Masse mit Maßstabsfaktoren versehen werden, wobei ein Faktor frei wählbar ist (der somit die Maßeinheit der Kraft festlegt). Man wählt ihn gleich der Zahl 1 im Trägheitsgesetz, womit man im Gravitationsgesetz die Newtonsche Gravitationskonstante, k, einführt. k hat dann die Maßstäbe Länge hoch drei, pro Masse, pro Zeit hoch zwei. Messungen ergeben [hier immer cgs-System] k = 6,67*10-8 cm³/g′s². In der ART wird die gesamte Materie durch den Energie-Impuls-Tensor T_{ik} ausgedrückt und die Krümmung des Raumes durch deren Krümmungstensor R_{ijkl}, die in Form des Einstein-Tensors G_{ik} zu T_{ik} in Beziehung gesetzt wird. Wählt man als Kopplungskonstante beider Größen κ, ist die Einsteinsche Gleichung

$$G_{ik} = \kappa^* T_{ik} \,. \tag{1}$$

In Gl. (1) tritt überhaupt keine Masse auf; die Bewegung der Körper, die in T_{ik} enthalten ist, wird aus der Divergenz $T_{i,k}^{k}=0$ bestimmt, wobei die Krümmung der Raum-Zeit in die Ableitung (symbolisiert durch ;k) eingeht. Die Krümmung wiederum hängt mit dem Energie-Impuls-Tensor T_{ik} ebenfalls über (1) zusammen.

Zur Anwendung der Einsteinschen Gleichung (1) muss κ bekannt sein. Wie in der Physik üblich, muss ein berechenbares Modell gefunden werden, aus dem

durch die daraus abgeleitete mathematische Beziehung zu anderen Größen und deren Messung die gesuchte Größe – nach Eliminierung von Störgrößen – berechnet wird. Beispielsweise könnte man aus einem "Schwarzen" Loch mit bestimmbarem Schwarzschildradius $R_{\rm g}$ und dessen Energie E die Kopplungskonstante κ vermöge $\kappa=4\pi^*R_{\rm g}/E$ (2) berechnen. Für E kann man die zugehörige Masse M (aus $E=Mc^2$) einsetzen. Unter Anwendung des Korrespondenzprinzips zum Huygens–Newtonschen Gravitationsgesetz erhält man den Zusammenhang $\kappa=8\pi k/c^4(3)$ mit der Newtonschen Gravitationskonstanten k.

In einem materie- und spannungsfreien Raum, also T_{ik} =0, ist ebenfalls G_{ik} =0. In diesem Fall bleibt κ und folglich die Newtonsche Gravitationskonstante k unbestimmt, was nicht anders zu erwarten gewesen ist.

Um bei Experimenten zur Bestimmung von κ nicht die Störung durch andere Massen (anstatt Energie hier die Anpassung an den allgemeinen Sprachgebrauch) eliminieren zu müssen, ist es angebracht, von vorne herein alle Massen einzubeziehen, das heißt den gesamten Kosmos. Das ist nur bei einem geschlossenen Kosmos möglich, der eine endliche Masse hat; beim offenen ist die Gesamtmasse unendlich. Das bedeutet aber auch, dass die strenge Machsche Vermutung nur für geschlossene – endliche – kosmologische Modelle richtig sein kann. Für den Friedmann-Kosmos erhält man so $\kappa = \pi/6*L_{max}/E =$ $\pi/6*L_{max}/M_{ges}c^2$, wobei $L_{max} = \pi a_{max}$, die größte jemals existierende Ausdehnung des Kosmos ist, bei dem größten Krümmungsradius des Weltalls $a_{max} = a(\pi/2)$ (es ergibt sich L_{max}=24*R_g!). Die sichtbare Welt und die in ihr enthaltene Masse ist für einen Beobachter, der ja nicht seit dem "Urknall" existiert, jedoch kleiner; für ihn existiert ein Ereignishorizont. Alle Materie jenseits des Ereignishorizontes besitzt keine Wechselwirkung mit der Materie im Koordinatenursprung und hat somit keinen Einfluss auf die Masse im Ursprung. Ein Experimentator, genauer gesagt der messende Beobachter, kann die Massen nur in diesem Bereich bestimmen und dann über ein kosmologisches Modell für den gesamten geschlossenen Kosmos extrapolieren. Gemäß der Voraussetzung der Homogenität ist die Massendichte u überall zu einer bestimmten Zeit gleich. Die beobachtbare Masse ist $M_{beob} = M_{ges}*(\eta - \sin \eta * \cos \eta)/\pi$, mit dem Weltalter η von 0 bis π .

Bei einem offenen Weltmodell ist der Kosmos endlos ausgedehnt und die in ihm enthaltene Masse unbegrenzt. Ist dessen Geometrie hyperbolisch (Winkelsumme im Dreieck kleiner als 180°), gilt $\underline{\kappa} = 6/\epsilon a^2$, mit der Energiedichte ϵ und dem Krümmungsradius a; der gleiche Ausdruck wie im geschlossenem Modell.

Bei parabolischer Geometrie ist der Raum "flach", also nicht gekrümmt (Winkelsumme im Dreieck 180°), dehnt sich aber mit dem Skalenfaktor

$$b(\tau) = b_0 * (\tau/\tau_0)^{2/3}$$

aus; τ ist die Eigenzeit. Die Rechnungen ergeben $\kappa = 4/3\epsilon(c\tau)^2$.

Am Schluss sind für die einfachen Friedmannschen kosmologischen Modelle die Formeln aus Landafschitz, Bd. II, angegeben.

Es taucht die Frage auf, ob die Kopplungs-"Konstante" κ in der Frühphase des Kosmos nicht von der Zeit abhängt. Es ist zu vermuten, dass $\kappa \to 0$ für $\tau \to 0$ ist ($\tau \sim$ Weltalter). Dies wäre im Einklang mit dem Umstand, nach dem in der Frühphase des Kosmos es unmöglich ist, Punkte oder gar Abstände zwischen den ausgedehnten "Teilchen" zu definieren, möglicherweise mit der Konsequenz der Unerreichbarkeit des (zurückgerechneten) Nullpunktes der Zeit. In der Anfangsphase wäre die Metrik des Raumes von der Materie entkoppelt, sie wäre sogar nicht existent.

Eigentlich ist diese Vermutung sogar zwingend. Geht man von der Urzeugung eines ersten Photonenpaares und weiterer in deren Raum-Zeit aus, die folgend die globale Raum-Zeit erzeugen, bleibt in endlicher Zeit die Energie des derart sich entwickelnden Kosmos endlich. Nur in einer unbegrenzten Zeit kann die Energie – und auch der Raum – unbegrenzt werden, bzw. sein. Nur die Extrapolation von der Jetztzeit zurück zur Zeit der Entstehung des globalen Raumes ergibt einen endlichen Zeitabschnitt.

Dieses oder ein ähnliches Modell, welchem nach der Anfangsphase eines Licht- oder Photonenkosmos ein Quark-Gluonen-Kosmos folgt, mit der späteren Erzeugung von Elektronen (und anderer Leptonen), erfordert modifizierte kosmologische Weltmodelle, als sie derzeit gebräuchlich sind. Dies folgt aus der Mindestzahl an Raumdimensionen, die notwendig sind.

Besteht der gesamte Kosmos aus einem Photonengas, genügen drei Raumdimensionen. Sind hochenergetische Photonen/Coloronen zur Erzeugung einzelner Quark-Gluonen-Konglomerate vorhanden, so sind ihre sechs weiteren Raumdimensionen "eingerollt", und der globale Raum besteht weiterhin aus drei Dimensionen. Ist die Anzahl dieser Konglomerate so weit gewachsen, dass sie den gesamten Raum ausfüllen – sie miteinander verschränkt sind –, spätestens dann ist der Kosmos ein neundimensionales Raumgebilde, ergänzt durch die Zeitdimension. Einige Relationen sind in Räumen mit unterschiedlicher Anzahl an Dimensionen verschieden. So ist die Energiedichte – die in T_{ik} eingeht – Energie, dividiert durch das Volumen. Das Volumen eines Raumes mit dem Krümmungsradius a ist im dreidimensionalen Fall $V_3 = 2\pi^2 a^3$, das des neundimensionalen $V_9 = \pi^5 a^9/12$. Schwarzschildradius und Ereignishorizont hängen ebenfalls anders mit der gesamten (neundimensionalen) Masse zusammen, wie die (neundimensionale) Gravitationskonstante. Insbesondere die zeitliche Entwicklung verläuft bei gleicher Gesamtmasse unterschiedlich ab.

Fragmentiert das Quark-Gluonen-Konglomerat zu einzelnen kosmischen Objekten, die selbst noch neundimensional sein können, so geht der Kosmos in ein dreidimensionales Objekt über, wiederum mit anderem zeitlichen Verlauf und der Möglichkeit geschlossener Bewegungsbahnen. Interne Fragmentationen in den kosmischen Einzelobjekten führen zur Bildung der Baryonen, u.a. der Protonen und Neutronen, und schließlich gemeinsam mit Elektronen zur kondensierten Materie, die "von außen" gesehen dreidimensional ist und letztlich den Beobachterraum bildet. Diese stoffliche Materie in ihren – klassisch – drei Aggregatzuständen ist für uns gemeine, mit Selbstbewusstsein ausgestattete Wesen, die spürbare Materie.

Wenn es richtig ist, dass die Dunkle Materie sich in sechs zum Beobachterraum weiteren Dimensionen befindet, stellt sich die Frage, ob diese weiteren Dimensionen dem Beobachterraum aufgepfropft sind, ähnlich wie die "eingerollten" Dimensionen der Farbladungen der Quarks, nur im "kosmischen" Maßstab, oder der gesamte Raum neundimensional ist. Dann wäre umgekehrt der Beobachterraum ein Unterraum. Dann mit anderer Dynamik, eventuell mit beschleunigter Ausdehnung ohne kosmologischem Glied λ in den nun zehndimensionalen Einsteinschen Gleichungen.

Ist andererseits der Kosmos endlich, hat ein endliches Volumen und eine endliche Masse, so ist seine Metrik mit der Metrik im Inneren eines Schwarzen Loches vergleichbar. Dieser Kosmos könnte in einem Hyperkosmos als Schwarzes Loch eingebettet sein. Im Hyperkosmos gäbe es neben der "gewöhnlichen" Materie eine beliebige Anzahl Schwarzer Löcher, von denen einige wiederum einen Kosmos darstellen könnten. Dann kann durch Zustrom von Materie aus dem Hyperkosmos die Masse "unseres" Kosmos zunehmen, mit der Konsequenz einer abnehmenden Kopplungskonstante. Eine Rechnung mit zunehmender Masse und variablem κ könnte zu dem Ergebnis kommen, dass dieser Kosmos sich bei genügend großem Massezustrom (während eines Zeitabschnittes) beschleunigt ausdehnt. Damit könnten eventuell die aus der Beobachtung berechnete Zunahme der Expansion erklärt werden, ohne Vorhandensein eines kosmologischen Terms in den Einsteinschen Gleichungen, d. h. ohne die Dunkle Energie.

Formeln, ab nächster Seite

Formeln zum Friedman-Kosmos

aus Landau/Lifschitz, Bd. II

Homogenität und Isotropie des 3-dimensionalen Raumes

$$R^{\alpha}_{\beta\gamma\delta} = \lambda(\delta^{\alpha}_{\gamma}\gamma_{\delta\beta} - \delta^{\alpha}_{\delta}\gamma_{\gamma\beta}), R = 6\lambda, \alpha, \beta, \gamma, \delta = 1...3,$$

$$dl^{2} = \sum_{3} dx_{\alpha}^{2}, 1 \text{ ist Raumlänge, oder}$$

$$ds^2 = \sum_i dx_i^2$$
, 4-dim. Länge

Hypersphäre:
$$a^2 = \sum_{i=1}^{4} x_i^2$$
, a^2 ist Radiusquadrat

$$x_4^2 = a^2 - \sum_{i=1}^{3} x_i^2$$
, $\lambda = \pm 1/a^2$, $\lambda > 0$ (geschl.), $\lambda < 0$ (offen)

$$dl^{2} = \frac{dr^{2}}{1 - r^{2}/a^{2}} + r^{2} \left(\sin^{2}\theta d\varphi^{2} + d\theta^{2}\right), \ \lambda > 0$$

$$dl^{2} = \frac{dr^{2}}{1 + r^{2}/a^{2}} + r^{2} \left(\sin^{2}\theta d\varphi^{2} + d\theta^{2}\right), \ \lambda < 0$$

$$L(r) = \int_{0}^{r} \frac{dr}{\sqrt{1 - \left(\frac{r}{a}\right)^{2}}} = a * \arcsin \frac{r}{a}, \ \lambda > 0$$

$$L(r) = \int_{0}^{r} \frac{dr}{\sqrt{1 + \left(\frac{r}{a}\right)^{2}}} = a * \operatorname{arcsinh} \frac{r}{a}, \ \lambda < 0$$

$$L_{\lambda > 0}(a) = \pi/2 *a, L_{\lambda < 0}(a) = 0.88137358401954*a$$

$$\frac{\lambda > 0, \ r = a * sin \chi,}{r/a = sin \chi}, \ \chi = [0, \pi], \ \chi = arcsin(r/a), \ L(\chi) = a \chi$$
 $\frac{\lambda < 0, \ r' = a * sin \chi,}{dr/a = cos \chi} \ d\chi, \ ebenfalls \ \underline{L(\chi) = a \chi}$

$$dl^{2} = a^{2} \left[d\chi^{2} + \sin^{2}\chi \left(d\theta^{2} + \sin^{2}\theta * d\varphi^{2} \right) \right]$$

$$O = 4\pi a^2 \sin^2 \chi$$
 (Oberfläche), $V_0 = 2\pi^2 a^3$

$$V = a^{3} \int_{0}^{\pi} \int_{0}^{\pi} \sin^{2}\chi * \sin\theta * d\chi d\theta d\varphi =$$

$$= a^{3} 4\pi \int_{0}^{\pi} \sin^{2}\chi d\chi = 2\pi a^{3} \left(\chi - \frac{1}{2}\sin 2\chi\right)$$

$$\frac{\lambda < 0, r = a * \sinh \chi}{dl^{2}} \chi = [0, \infty)$$

$$dl^{2} = a^{2} \left[d\chi^{2} + \sinh^{2}\chi * \left(d\theta^{2} + \sin^{2}\theta * d\varphi^{2}\right)\right]$$

$$dl = a * d\chi, \quad L = a * \chi = a * a \sinh^{r}/a$$

$$O = 4\pi a^{2} \sinh^{2}\chi$$

$$V = \int_{0}^{\chi} O * a d\chi = 4\pi a^{3} \int_{0}^{\chi} \sinh^{2}\chi d\chi = 2\pi a^{3} \left[\sinh\chi * \cosh\chi - \chi\right]_{0}^{\chi}$$

$$V = 2\pi a^{3} \left[\sinh\chi * \cosh\chi - \chi\right]$$

$$\frac{ds^{2} = c^{2}d\tau^{2} - dl^{2}, cd\tau = ad\eta, aus ds^{2} = 0 & d\theta = d\varphi = 0 \rightarrow d\chi = \pm d\eta, \rightarrow \chi = \pm (\eta - \eta \varrho),$$

$$ds^{2} = a^{2} (\eta) \left\{ d\eta^{2} - d\chi^{2} - \sin^{2} \chi \left(d\theta^{2} + \sin^{2} \theta d\varphi^{2} \right) \right\} \underbrace{\lambda > 0}_{\lambda \leq \theta}$$

$$ds^{2} = a^{2} (\eta) \left\{ d\eta^{2} - d\chi^{2} - \sinh^{2} \chi \left(d\theta^{2} + \sin^{2} \theta d\varphi^{2} \right) \right\} \underbrace{\lambda \leq 0}_{\lambda \leq \theta}$$

Feldgleichung:
$$G_{ik} = \kappa T_{ik}$$

$$a_0 \doteq 2kM_0/3\pi c^2$$
, $\kappa = 8\pi k/c^4$, $a_0 = \kappa M_0 c^2/3*4\pi^2$, $cd\tau = ad\eta$
 $\kappa = a_0*3*4\pi^2/M_{ges}c^2 = 6/(\mu c^2 a_0^2)$
für $\lambda < 0$ sind a_0 und M_0 willkürliche Konstanten

 $\underline{\lambda > 0}$, Elliptische Geometrie, geschlossener Kosmos

$$a = a_0(1 - \cos\eta), c\tau = a_0(\eta - \sin\eta), \eta = [0...\pi], a(\pi/2) = a_0$$

$$M_{ges} = \mu V_{ges} = 2\pi^2 a_0^3 \mu$$

$$L(\eta) = a \eta = a_0 \eta (1 - \cos \eta)$$

$$L(\pi/2) = a \pi/2$$
, $L(\pi) = L_{max} = a \pi$, $M_{beob}(\pi) = M_{ges} = M_{max}$

$$V = 2\pi^2 a^3 [\eta - \sin \eta \cos \eta] / \pi, \ \eta = [0...\pi]$$

$$M_{beob} = M_{max} (\eta - \sin \eta * \cos \eta) / \pi =$$

$$= 2\pi a^{3} \mu (\eta - \sin \eta * \cos \eta) = 2\pi a_{0}^{3} \mu (\eta - \sin \eta * \cos \eta) (1 - \cos \eta)^{3}$$

$$\mu = M_{beob}/V \equiv \mu$$

 λ < 0, Hyperbolische Geometrie, unendlicher Kosmos

$$a = a_0(\cosh \eta - 1), c\tau = a_0(\sinh \eta - \eta), \ \eta = [0...\infty), \ cd\tau = ad\eta$$

$$\chi = \pm (\eta - \eta_0), \qquad L = a \chi = \pm a (\eta - \eta_0), O = 4\pi a^2 \sinh^2 \eta,$$

$$V = 2\pi^2 a^3 (\sinh \eta \cosh \eta - \eta)/\pi$$

$$V = 2\pi a^3 \left[\sinh \eta * \cosh \eta - \eta \right]$$

$$M_{beob} = 12\pi^2 a \left[\sinh \eta * \cosh \eta - \eta \right] / \pi \kappa c^2$$

$$\mu_{beob} = M_{beob} / V = 6 / (\kappa c^2 a^2)$$

$$\rightarrow \underbrace{\kappa = 6/(\mu c^2 a^2)}_{R = 6\lambda} = \pm 1/a^2 = \pm \kappa \mu c^2 = \pm \kappa \epsilon$$

Rotverschiebung

$$\frac{\Delta\omega}{\omega_0} = -\frac{da(\eta)/d\eta}{a(\eta)^2}L = -\frac{h}{c}L, \ h = c\frac{da(\eta)/d\eta}{a(\eta)^2}$$

 $a(\eta)$ ist der Krümmungsradius im alter η des Kosmos, unabhängig davon ist L der Abstand vom Beobachter zur Lichtquelle.

$$\lambda > 0$$

$$h = \frac{c}{a_0} * \frac{\sin \eta}{(1 - \cos \eta)^2}, \ \frac{1}{a_0} = \sqrt{\frac{\kappa \mu c^2}{6}}$$
 $\cos(\eta/2) = \frac{h}{c} \sqrt{\frac{3}{\kappa \mu c^2}}$

$$h = c \frac{\sin 2\pi\eta}{\left(1 - \cos 2\pi\eta\right)^2} \sqrt{\frac{\kappa\mu c^2}{6}}$$

$\lambda < 0$

$$h = \frac{c}{a_0} * \frac{\sinh \eta}{(\cosh \eta - 1)^2}, \ \frac{1}{a_0} = \sqrt{\frac{\kappa \mu c^2}{6}} \qquad \cosh(\eta/2) = \frac{h}{c} \sqrt{\frac{3}{\kappa \mu c^2}}$$

$$h = c \frac{\sinh 2\pi\eta}{\left(\cosh 2\pi\eta - 1\right)^2} \sqrt{\frac{\kappa\mu c^2}{6}}$$

$$\lambda = 0$$

$$\overline{ds^2} = (cd\tau)^2 - b(\tau)^2 * \left[dx_1^2 + dx_2^2 + dx_3^2 \right] = (cd\tau)^2 - b(\tau)^2 * (dl)^2$$

$$\left(\frac{b}{b_0}\right)^3 = \left(\frac{\tau}{\tau_0}\right)^2, \quad h = c\frac{db/d\tau}{b^2} = \frac{2c}{3b_0\tau_0} * \left(\frac{\tau}{\tau_0}\right)^{-1}$$

$$l - l_0 = \pm \frac{3c\tau_0}{b_0} * \left(\frac{\tau}{\tau_0}\right)^{1/3}$$
, aus $ds^2 = 0$ und $\frac{cd\tau}{b(\tau)} = \pm dl$

$$L = b(\tau) * (l - l_0) = 3c\tau_0 \left(\frac{\tau}{\tau_0} \right)$$

$$\kappa\mu c^4 = \frac{3}{b^2} (db/d\tau)^2 \qquad \kappa\mu c^2 = \frac{4}{3(c\tau)^2}$$

Wesentliche Grundlagen der Physik der Elementarteilchen und einige Folgerungen [D]

[• Einführung]

Es gibt Elementarteilchen und zwar mit bestimmten Eigenschaften.

(Nullter Hauptsatz der Theorie der Elementarteilchen).

[• 2.2]

Wechselwirkung und Eig stehen in unmittelbarem Zusammenhang.

[• 2.3 Beobachtbarkeit]

Innerhalb eines Elementarteilchens ist die Relativitätstheorie nicht anwendbar (nicht gültig).

[• 3.3.1 Der Spin]

Die Torsion \mathcal{T} und die Anzahl der Schleifen \mathcal{Z} ergeben die geometrische Größe \mathcal{G} , mit $\mathcal{G} = \mathcal{Z}/\mathcal{T}$. \mathcal{G} ist eine rationale Zahl, wobei in der Natur nur einige realisiert sind. Haben \mathcal{Z} und \mathcal{T} gemeinsame Teiler, führt dies zur erweiterten Helizität und zum erweiterten Spin.

[• 3.3.1 Der Spin]

<u>Die Geometrie – der Raum x und die Topologie</u> \mathcal{G} <u>– bestimmt jede Art von einfachen Teilchen eindeutig.</u> (1. Hauptsatz)

[• 3.3.1 Der Spin]

<u>Die Torus-Hauptachse liegt für alle gewöhnlichen sichtbaren Teilchen im</u> Beobachterraum, die der Teilchen der Dunklen Materie in den sechs Zusatzdimensionen des physikalischen Raumes.

[• 3.3.1 Der Spin]

Ist der gemeinsame Teiler von \mathcal{Z} und \mathcal{T} gleich 1, handelt es sich um die Grundform, es sind die Teilchen der sogenannten 1. Familie. Hier wird die vage Vermutung geäußert, dass es sich beim gemeinsamen Teiler 2 um die Teilchen der 2. Familie und beim gemeinsamen Teiler 4 um die 3. Familie handelt

[• 3.4 Die Zeit]

Im Raum x und in der Zeit t eines Teilchens existiert keine Wechselwirkung der darin enthaltenen Ladung. (2. Hauptsatz)

[• 4.2]

<u>Die Ruhenergie eines einfachen und freien Teilchens in seinem Raum</u> ergibt sich aus einer Norm seiner Ladungen F: $E_0 = \pm ||F||$. (3. Hauptsatz)

[• 4.3 Die Wirkung eines Elementarteilchens] Die Wirkung ist keine Erhaltungsgröße.

[• 4.3, S. 16]

Das Maß der Wirkung jedes einfachen Teilchens ist h. (4. Hauptsatz)

[• 4.3]

<u>Die grundlegenden Identitäten sind gegenüber einer CPT-Transformation</u> invariant.

[• 4.4 Teilchen mit Ruhenergie und ihre Wechselwirkung]

<u>In der Zeit t eines freien Teilchens mit Ruhenergie wird ein WW-Teilchen (Boson) absorbiert und eines emittiert.</u> (5. Hauptsatz)

[•4.4]

<u>Die Wechselwirkung eines Teilchens wird durch Zählen seiner Bosonen vollständig beschrieben.</u>

[• 6.1 Entstehung eines Photonenpaares]

In der Raum-Zeit eines Teilchens, sozusagen "innerhalb" derer, gibt es keine Wechselwirkung der Eigenschaft oder Eigenschaften, folglich auch keine Geschwindigkeit der Wechselwirkung, (siehe auch 2. HS)

[• 7.1 Grundlagen, S. 28]

<u>Ladungen können nicht verschwinden oder sich (gegenseitig) aufheben, dies</u> ist lediglich bei effektiven Ladungen möglich.

[• 7.2 Raum und spezifizierte Eig – die Ladungen]

Die Darstellung eines Teilchens durch seine Ladungen und die Angaben zur Raumstruktur Torsion \mathcal{T} und Schleifenzahl \mathcal{S} ist eindeutig.

[Präzisierung des 1. HS]

[• 7.3 Bosonen]

<u>Das besondere und völlig Neue ist, dass sich ein energiereiches Photon,</u> welches in einem höherdimensionalen Raum eingebettet ist, sich in ein <u>Coloron verwandelt und umgekehrt, sich ein Coloron, welches in einen dreidimensionalen Raum gelangt, ein Photon wird.</u>

[• 11, Farbneutrale Konglomerate ...]

<u>Die Bindungen zwischen $c_1^{\pm}\uparrow$, $c_2^{\pm}\uparrow$, $c_3^{\pm}\uparrow$ sind wesentlich stärker als die zwischen Farb- und Antifarbladung $c_1^{\pm}\uparrow$, $c_3^{\mp}\uparrow$ (S. 50).</u>

[• 12]

Die (Halb-)Räume zweier stoßender Leptonen verschiedener Generation sind gleich, die Stöße unterschiedlicher (Halb-)Räume werden unterdrückt.

[• 13]

Zerfällt ein Teilchen einer (höheren) Familie, entsteht auf jedem Fall ein anderes Teilchen der selben Familie, aber mit geringerer Ruhenergie.

[• 13]

Da die Ruhenergie der Photonen und der Coloronen Null ist, kann sie sich nicht erhöhen. Das bedeutet, die Änderung der Familie dieser beiden Teilchen erfolgt ohne Zufuhr von Energie bzw. ohne Wechselwirkung mit anderen Teilchen, ihre Energie ist unabhängig von N.

[• 16]

Da die Hauptachsen der – einfachen – dunklen Teilchen die Richtung ihrer Impulse haben, bewegen sie sich nicht im Beobachterraum. "Dunkle Photonen", "Dunkle Coloronen" und die "dunklen" Leptonen, sind in abgeschlossenen Gebieten Dunkler Materie gefangen. Die Bereiche (Dimensionen) der Dunklen Materie, die im Beobachterraum liegen, bewegen sich darin aufgrund ihrer Energie gemäß der Allgemeinen Relativitäts Theorie.

[• 16]

"Generell" bewegen sich alle Arten von Quanten aufgrund ihrer Energie gemäss der Allgemeinen Relativitätstheorie. Diese generelle Bewegung ist der Quantenbewegung p nach • 4.3 Gl. (8.2) überlagert.

[• 20]

Daraus folgt: die nahezu gleichen Anzahl von Antineutrinos im Kosmos wie die der vorhandenen und ehemals vorhandenen Neutronen kann dieses Modell zur Entstehung des Kosmos bestätigen. [

]

[• 21]

Erst die Bildung der Konglomerate p und n führt zur Diffraktion in die positive Materie oder mit \overline{p} und \overline{n} in die negative Antimaterie. In eine Welt und eine Antiwelt. In je einem Planck-Punkt. Der Kosmos beinhaltet eine Vielzahl von Planck- und Antiplanckpunkten.

[• 21]

In den Planck-Punkten überwiegen je nach ihrer Zusammensetzung aus Baryonen oder Antibaryonen die Antineutrinos oder die Neutrinos. Gerät ein v^{\pm} aus einem Planckpunkt in einen gegensätzlich Planckpunk, so annihiliert dieses "augenblicklich" mit dem gegensätzlichen v^{\mp} zu einem Coloron.

Nachtrag

Nach einer ersten Überarbeitung des Heftes "Grundbegriffe der Physik" zur 2. Auflage holte ich mir eine Reihe von Drucken mit Vorträgen von Max Planck und begann mit "DAS WELTBILD DER NEUEN PHYSIK", von 1929, das ich bereits gegen Ende meines Studiums 1968/69/70 gelesen hatte. Überwältig haben mich Sätze von Max Planck, zu finden im Abschnitt IV, wie: "Man sieht: es geht hierbei um nichts weniger als um den Begriff des materiellen Punktes, den elementarsten Begriff der klassischen Mechanik. Die bisherige zentrale Bedeutung dieses Begriffes muss grundsätzlich geopfert werden; nur in besonderen Grenzfällen kann sie bestehen bleiben." und wenig weiter "Während der Konfigurationspunkt der klassischen Theorie im Laufe der Zeit eine ganz bestimmte Kurve beschreibt, erfüllt der Konfigurationspunkt der Materiewelle zu jeder Zeit den ganzen unendlichen Raum." und "Danach gleicht der Kreislauf eines Elektrons um den Atomkern … vielmehr der Drehung eines allseitig symmetrischen Ringes in sich selbst, so dass der Ring als Ganzes stets die nämliche Lage im Raum einnimmt und es gar keinen physikalischen Sinn hat, von dem augenblicklichen Ort des Elektrons zu reden." Soviel zum Bild eines Elektrons. Über dessen Energie schreibt Planck u.a. "Denn dadurch, dass sie die Schwingungsperiode der Welle bezeichnet, ist selbstverständlich ihre ursprüngliche Bedeutung, die ihr durch das Erhaltungsprinzip gegeben wird, nicht verloren gegangen. Wenn aber das Energieprinzip auch für die Wellenmechanik gelten soll, so muss die Energie einer Materiewelle sich darstellen lassen nicht nur durch die Schwingungszahl, sondern auch durch ein über den ganzen Konfigurationsraum der Welle erstrecktes Integral."

Das sind Sätze, die grundlegenden Überlegungen entsprungen sind und die ich mit Genugtuung gelesen habe, angesichts der von mancher Seite geäußerten Einwände gegenüber meinen diesbezüglichen Vorschlägen in "Grundbegriffe der Physik".

Auf einer leeren Seite am Ende des Heftes hatte ich notiert: Die Unschärferelation wird leider oft falsch dahingehend interpretiert, als ob die Einwirkung des Messgerätes (oder des Subjektes, des Ich) die Unschärfe bringt. Solche Unschärfen könnten oft, möglicherweise immer, durch eine Theorie eliminiert werden. Meine Meinung: Durch die Unschärferelation wird eine prinzipielle Unschärfe ausgedrückt. Diese rührt möglicherweise lediglich daher, dass nicht-klassische Objekte klassisch betrachtet werden, werden müssen. Dies hat mit der Messung selbst nichts zu tun, sondern ist theoretischer Art. – Denken wir daran, dass ein Elementarteilchen, z.B. ein γ-Quant ... ein klassisches Teilchen – nämlich das Messgerät – sein kann (z.B. beim Compton-Effekt). ... Wird es als nicht-klassisches Objekt behandelt, kommt bei seiner klassischen Betrachtung die Unschärferelation ins Spiel. – das ist beinahe bereits das, was ich Jahrzehnte später bei der Formulierung dieser Grundlagen ausdrückte und zwischenzeitlich vergessen hatte.

Potsdam, 28. Dezember 2008

Cash and Names and State a			
Sach- und Namenverzeichnis	Hauptsätze (HS)		
	0. HS 9		
	1. HS 20		
Wort Seite	2. HS 21		
Anti-Eig 15	3. HS 24		
Anti-Neutrino 44 , 51 ff, 69, 86, ff	4. HS 24		
Asymmetrie 43, 60, 84	5. HS 26, 45		
	Helizität 75		
Baryon 55 ff, 87ff	Heisenberg, Werner 17		
Beobachtbarkeit 12 ff	Higgs, -Boson 46		
Beobachterraum 24 ff, 33 ff	Hopf 19		
Boson 18, 28, 30, 32	Hopffaserung 19		
	Hyperkomlexe Zahlen 18		
Caldwell, Günter 41	Tryperkonnexe Zamen 10		
Casimir, Hendrik 26	Impuls 14, 20 ff, 23 ff		
Coloron 38 ff	14, 20 II, 23 II		
Compton, -Länge 29 ff	Kant, Immanuel iii		
	Komplexe Zahlen 18		
de Broglie 26, 28 ff	Konglomerat 38 ff, 43 ff, 46		
Dirac, Paul 29, 96	Kosmos 83, 87		
Dirac-Gleichung (*) 29, 45	ROSITIOS 65, 67		
	Ladung 18 ff, 24 ff, 28ff		
Eichtransformation. 38 ff, 74	Ladungskonjugation 25		
Eig 12 ff	Landau/Lifschitz vi		
Einstein, Albert 9, 14 ff, 23	Landau, Lew 17		
Energie 1 ff, 15			
Energie, -Ruhenergie 24 , 26 , 28	Lang, Rafael 72		
Energie, Dunkle 91	Mach Frast 14 30 98		
Ereignis 12, 31	Mach, Ernst 14, 30, 98 Masse, Massepunkt 13, 23		
2, 21	- Ruhmasse 23		
Familie der Elementarteilchen 20 ff	dynamische 22 25		
Fermionen 44, 51 ff,	- dynamische 23, 35 Materie 11 ff, 30 ff, 22 ff		
Feynman, Richard 17	- Dunkle 20, 70 ff, 91		
Feynman-Graph 62	- Dulikie 20, 7 0 11, 91		
Feynman-Diagramm 63	Neutrino/Anti- 44 ff, 60 ff		
Fritzsch, Harald 45	Neutrinooszillation 45		
Friedmann–Kosmos 90	Neutron 86 ff		
	Neutronenstern 53		
Gammablitz, kosmischer- 54, 69	Newton, Isaak 14 ff, 98		
Geometrie 13, 17 , 25, 67	<i>Ivewion, Isaak</i> 14 11, 98		
Gerthsen, Christian 28	Oktonionen 18, 37		
Gluon 39 ff, 35	OKIOIHOHOH 10, 37		
Grindhammer, 41, 60	Photon 31 , 33, 75, 77		
Grundbegriff 10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Grundlagen v, 10, 12, 14, 36, 104	1 0		
(5) Tunidiagon (7, 10, 12, 17, 50, 107	Quaternionen 18 ff		
	Pandynato, Πανδυνατο 30		

Pauliprinzip	74	
Planck, Max	9, 72	Tabelle 1 40
Planck-Punkte	88 ff	Thales von Milet 10
Photon	24, 31	Teilchen 12 ff, 17 ff
Positron	44 ff	- Subteilchen 68
Proton	56 ff	Topologie 10, 20 ff
Pseudoboson	51, 59, 65	Torsion 19 ff, 38
Punkt	13, ff	Torus 18 ff., 66 ff
Quant	26 ff	Vakuumfluktuation 17, 25
Quantenfluktuation	31	Vektor, geometrischer 20
Quark/Quarks	51	
		Wechselwirkung 51, 12 ff, 62 ff
Raum	14 ff	Welle 26
- klassischer, -metrischer	r 6	- Wellenlänge 26 ff
- nichtmetrischer → nich	ntklass.	- Wellenpaket 26 ff
- in der Physik	6	Welt 83
- physikalischer	7	- Antiwelt 87 ff
- nichtklassischer	7	
Raum-Zeit	14	Wirkung, 23, 24
Relativitätstheorie 13 ff	, 21 ff, 72 ff	-squantum 9. 13 ff, 58
- Allgemeine	90	W [±] -Pseudoboson 65
Schleifen	20, 38, 66	Z ⁰ -Pseudoboson 65
Schrödinger, Erwin (An	h. I) 75, 95	Zeit 12 ff, 21
Sommerfeld, Arnold	30	Zusatzdimension 44 ff
Sommerfeldsche		
- Feinstrukturkonstante	30	α-Quasi-Boson 46, 61
Spin	17, 66 ff	γ -Boson, \rightarrow Photon 39
- erweiterter	20, 50, ff	δ-Boson, → Gluon 39
Supernova	91	ε-Boson, → Gluon 39
-Nachfolge-Supernova	92	ζ-Boson, → Coloron 39
, ,	17, 54, 55 23, 27 ff	

Biografisches

Am 16. Dezember 1945 wurde ich in Rauenstein/Thür. geboren. Bis zum 10. Schuljahr besuchte ich dort die Grundschule (Allgemeine polytechnische Oberschule), nachfolgend drei Jahre lang eine Betriebsberufsschule mit Abiturabschluss in der Kreisstadt Sonneberg. Anschließend konnte ich 1965 das lang ersehnte Studium der Physik an der Friedrich-Schiller-Universität in Jena aufnehmen. Mein Berufsleben begann 1970 am Astrophysikalischen Observatorium in Potsdam und wurde mit Auflösung der Akademie der Wissenschaften der DDR im Dezember des Jahres 1991 beendet. Etwa im Jahre 2000 begann ich mich wieder mit Physik zu beschäftigen; dieses mal mit den Themen, die der Grund meines Studiums gewesen sind. Die Resultate aus dieser Zeit liegen in diesem Heft vor. Ich wünschte mir, dass einige der dargelegten Vorstellungen anerkennenswert sind.

20. Mai 2010 nahe Chan Beerotayim, Negev-Wüste, Israel Foto Sarah Wolf ®